用户名: 密码: 验证码:
Synthesis, characterization, and electrochemical properties of smectic pyridinium salts with inorganic dihydrogen phosphate ions
详细信息    查看全文
  • 作者:Xiaohui Yang ; Shuai Tan ; Ting Liang ; Bingzhuo Wei ; Yong Wu
  • 关键词:Liquid crystal ; Electrochemistry ; Proton conduction ; Pyridinium ; Dihydrogen phosphate
  • 刊名:Ionics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:22
  • 期:1
  • 页码:85-92
  • 全文大小:930 KB
  • 参考文献:1.Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1:5–39CrossRef
    2.Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. J Hydrogen Energy 35:9349–9384CrossRef
    3.Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585CrossRef
    4.Motupally S, Becker AJ, Weidner JW (2000) Diffusion of water in Nafion 115 membranes. J Electrochem Soc 147:3171–3177CrossRef
    5.Schuster MFH, Meyer WH (2003) Anhydrous proton-conducting polymers. Annu Rev Mater Res 33:233–261CrossRef
    6.Yang B, Manohar A, Surya-Prakash GK et al (2011) Anhydrous proton-conducting membrane based on poly-2-vinylpyridinium dihydrogen phosphate for electrochemical applications. J Phys Chem B 115:14462–14468CrossRef
    7.Tiitu M, Torkkeli M, Serimaa R et al (2005) Self-assembly and flow alignment of protonically conducting complexes of polystyrene-block-poly(4-vinylpyridine) diblock copolymer with phosphoric acid. Solid State Ion 176:1291–1299CrossRef
    8.Chow CF, Roy VAL, Roy Z et al (2010) Novel high proton conductive material from liquid crystalline 4-(octadecyloxy)phenylsulfonic acid. J Mater Chem 6245–6249
    9.Soberats B, Yoshio M, Ichikawa T et al (2013) 3D Anhydrous proton-transporting nanochannels formed by self-assembly of liquid crystals composed of a sulfobetaine and a sulfonic acid. J Am Chem Soc 135:15286–15289CrossRef
    10.Tan S, Wang C, Wu Y (2013) Anisotropic assembly of a side chain liquid crystal polymer containing sulfoalkoxy groups for anhydrous proton conduction. J Mater Chem A 1:1022–1025CrossRef
    11.Kato T, Mizoshita N, Kishimoto K (2006) Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed 45:38–68CrossRef
    12.Kawatsuki N, Sakashita S, Takatani K et al (1996) Synthesis, characterization and photoreaction of side-chain liquid-crystalline polymers comprising cinnamoyl biphenyl mesogen. Macromol Chem Phys 197:1919–1935CrossRef
    13.Kato T, Fréchet JMJ (1989) New approach to mesophase stabilization through hydrogen-bonding molecular interactions in binary mixtures. J Am Chem Soc 111:8533–8535CrossRef
    14.Woo HJ, Majid SR, Arof AK (2011) Transference number and structural analysis of proton conducting polymer electrolyte based on poly(ε-caprolactone). Mater Res Innov 15:S49–S54CrossRef
    15.Shukur MF, Kadir MFZ (2014) Electrical and transport properties of NH4Br-doped cornstarch-based solid biopolymer electrolyte. Ionics 21:111–124CrossRef
    16.Selvasekarapandian S, Baskaran R, Hema M (2005) Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc–NH4SCN polymer electrolytes. Phys B 357:412–419CrossRef
    17.Zhang R, Edgar KJ (2014) Synthesis of curdlan derivatives regioselectively modified at C-6: O-(N)-acylated 6-amino-6-deoxycurdlan. Carbohydr Polym 105:161–168CrossRef
    18.Puziy AM, Poddubnaya OI, Socha RP et al (2008) XPS and NMR studies of phosphoric acid activated carbons. Carbon 46:2113–2123CrossRef
    19.Kaabi K, Rayes A, Nasr CB et al (2003) Synthesis and crystal structure of a new dihydrogenomonophosphate (4-C2H5C6H4NH3) H2PO4. Mater Res Bull 38:741–747CrossRef
    20.Erdemi H, Akbey U, Meyer WH (2010) Conductivity behavior and solid state NMR investigation of imidazolium-based polymeric ionic liquids. Solid State Ion 181:1586–1596CrossRef
    21.Kosonen H, Valkama S, Ruokolainen J et al (2003) One-dimensional optical reflectors based on self-organization of polymeric comb-shaped supramolecules. Eur Phys J E 10:69–75CrossRef
    22.Narayanan SR, Yen SP, Liu L et al (2006) Anhydrous proton-conducting polymeric electrolytes for fuel cells. J Phys Chem B 110:3942–3948CrossRef
    23.Kawahara M, Morita J, Rikukawa M et al (2000) Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules. Electrochim Acta 45:1395–1398CrossRef
    24.Stevens JR, Wieczorek W, Raducha D et al (1997) Proton conducting gel /H3PO4 electrolytes. Solid State Ion 97:347–358CrossRef
    25.Yamada M, Honma I (2003) Proton conducting acid/base mixed materials under water-free condition. Electrochim Acta 48:2411–2415CrossRef
    26.Kubelková L, Kotrla J, Florián J (1995) H-bonding and interaction energy of acetonitrile neutral and pyridine ion-pair surface complexes in zeolites of various acidity: FTIR and ab initio study. J Phys Chem 99:10285–10293CrossRef
    27.Buzzoni R, Bordiga S, Ricchiardi et al (1996) Interaction of pyridine with acidic (H-ZSM5, H-β, H-MORD Zeolites) and superacidic (H-Nafion membrane) systems: an IR investigation. Langmuir 12:930–940CrossRef
    28.Qian X, Gu N, Cheng Z et al (2001) Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836CrossRef
    29.Soboleva T, Xie Z, Shi Z et al (2008) Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes. J Electroanal Chem 622:145–152CrossRef
    30.Mikhailenko SD, Guiver MD, Kaliaguine S (2008) Measurements of PEM conductivity by impedance spectroscopy. Solid State Ion 179:619–624CrossRef
    31.Iwana A, Palewicza M, Sikoraa A et al (2010) Aliphatic–aromatic poly(azomethine)s with ester groups as thermotropic materials for opto(electronic) applications. Syth Met 160:1856–1867
    32.Yamada M, Honma I (2004) Anhydrous protonic conductivity of a self-assembled acid–base composite material. J Phys Chem B 108:5522–5526CrossRef
    33.Baskaran R, Selvasekarapandian S, Hirankumar G et al (2004) Vibrational, ac impedance and dielectric spectroscopic studies of poly(vinylacetate)–N,N–dimethylformamide–LiClO4 polymer gel electrolytes. J Power Sources 134:235–240CrossRef
    34.Cahill LS, Rana UA, Forsyth M et al (2010) Investigation of proton dynamics and the proton transport pathway in choline dihydrogen phosphate using solid-state NMR. Phys Chem Chem Phys 12:5431–5438CrossRef
    35.Ma YL, Wainright JS, Litt MH et al (2004) Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 151:A8–A16CrossRef
  • 作者单位:Xiaohui Yang (1)
    Shuai Tan (1)
    Ting Liang (1)
    Bingzhuo Wei (1)
    Yong Wu (1)

    1. College of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
Pyridinium salts with inorganic dihydrogen phosphate ions (CnPy-DHP) were derived from biphenyl benzoate-based precursors bearing terminal alkoxy chains. Molecular structures of the pyridinium salts were characterized by 31P magic-angle spinning nuclear magnetic resonance (31P MAS NMR) spectroscopy, elemental analysis, and Fourier transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry (DSC) measurements and polarizing optical microscopic (POM) observations indicated that the pyridinium salts exhibited smectic A (SA) phase at intermediate temperatures (above 159 °C). X-ray diffraction (XRD) measurements suggested that the pyridinium salts formed a bilayer structure with head-to-head configuration in the SA phase. Electrochemical impedance spectrum (EIS) measurements using indium tin oxide (ITO) electrodes showed that ionic conductivities of the pyridinium salts increased with the decrease in length of alkoxy chains and approached 7.0 × 10−5 S/cm in the SA phase. Wagner’s DC polarization measurements using manganese (IV) oxide (MnO2) electrodes confirmed the presence of proton conduction in the pyridinium salts. The steady state currents resulted from DC polarization revealed that the SA phase favored proton conduction. The temperature dependence of the ionic conductivity followed Arrhenius law, and the proton transport in the SA phase was supposed to occur by hopping of dissociated protons along layered pathways formed by pyridinium cations and dihydrogen phosphate ions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700