用户名: 密码: 验证码:
Biological nitrogen fixation in a post-volcanic chronosequence from south-central Chile
详细信息    查看全文
文摘
Biological nitrogen fixation is a key ecosystem function incorporating new nitrogen (N) during primary successions. Increasing evidence from tropical and northern temperate forests shows that phosphorus (P) and molybdenum (Mo) either alone or in combination limit the activity of free-living diazotrophs. In this study, we evaluated the effects of Mo, P, and carbon (C) addition, either singly or in combination, and moisture, on diazotrophic activity in a post-volcanic forest chronosequence in south-fentral Chile. Diazotrophic activity, both free-living (associated with fine litter) and symbiotic (associated with the moss Racomitrium lanuginosum and the cyanolichens Pseudocyphellaria berberina and P. coriifolia), was evaluated by incubation of samples and subsequent acetylene reduction assays conducted in the field and laboratory, in winter, spring and autumn of two consecutive years. Results showed that diazotrophic activity varied with the season of the year (lowest during the drier spring season), successional stage (highest in the maximal stage), and N-fixer community type (highest in symbiotic diazotrophs). In general, C+P+Mo limitation was documented for heterotrophic diazotrophs and P+Mo limitation for symbiotic diazotrophs. Limitation of diazotrophic activity was not associated with soil nutrient and C status in the chronosequence. Strong inhibition of diazotrophic activity by high N addition and by low moisture suggests that reductions in precipitation expected for south-central Chile under climate change, as well as increasing inputs of reactive N from atmospheric deposition due to increasing use of N fertilizers, may drastically alter the composition and functional role of cryptogamic assemblages in native forests.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700