用户名: 密码: 验证码:
Comparison of diurnal dynamics in evaporation rate between bare soil and moss-crusted soil within a revegetated desert ecosystem of northwestern China
详细信息    查看全文
  • 作者:Ya-Feng Zhang ; Xin-Ping Wang ; Yan-Xia Pan ; Rui Hu
  • 关键词:Biological soil crusts ; soil evaporation ; diurnal variation ; bare soil ; moss ; crusted soil
  • 刊名:Journal of Earth System Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:125
  • 期:1
  • 页码:95-102
  • 全文大小:633 KB
  • 参考文献:Aguiar M R and Sala O E 1999 Patch structure, dynamics and implications for the functioning of arid ecosystems; Trends Ecol. Evol. 14 (7) 273–277.CrossRef
    Allen R G, Pereira L S, Raes D and Smith M 1998 Crop evapotranspiration – Guidelines for computing crop water requirements–FAO irrigation and drainage paper 56; FAO, Rome 300 D05109 144–146.
    Belnap J 2003 The world at your feet: desert biological soil crusts; Front. Ecol. Environ. 1 (4) 181–189.CrossRef
    Belnap J 2006 The potential roles of biological soil crusts in dryland hydrologic cycles; Hydrol. Process. 20 (15) 3159–3178.CrossRef
    Belnap J and Lange O L 2002 Biological soil crusts: structure, function, and management; Springer, Berlin, Germany.
    Belnap J, Welter J R, Grimm N B, Barger N and Ludwig J A 2005 Linkages between microbial and hydrologic processes in arid and semi-arid watersheds; Ecology 86 (2) 298–307.CrossRef
    Berndtsson R, Nodomi K, Yasuda H, Persson T, Chen H S and Jinno K 1996 Soil water and temperature patterns in an arid desert dune sand; J. Hydrol. 185 (1–4) 221–240.CrossRef
    Bowker M A 2007 Biological soil crust rehabilitation in theory and practice: An underexploited opportunity; Restor. Ecol. 15 (1) 13–23.CrossRef
    Brotherson J D and Rushforth S R 1983 Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument, Arizona; Great Basin Nat. 43 (1) 73–78.
    Chamizo S, Canton Y, Domingo F and Belnap J 2013 Evaporative losses from soils covered by physical and different types of biological soil crusts; Hydrol. Process. 27 (3) 324–332.CrossRef
    Coppola A, Basile A, Wang X P, Comegna V, Tedeschi A, Mele G and Comegna A 2011 Hydrological behaviour of microbiotic crusts on sand dunes: Example from NW China comparing infiltration in crusted and crust-removed soil; Soil Till. Res. 117 34–43.CrossRef
    Fischer T, Veste M, Wiehe W and Lange P 2010 Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany; Catena 80 47–52.CrossRef
    Hillel D 1998 Environmental soil physics: Fundamentals, applications and environmental considerations; Academic Press, London, UK.
    Johansen J R 1993 Cryptogamic crusts of semi-arid and arid lands of North America; J. Phycol. 29 (2) 140–147.CrossRef
    Kidron G J and Tal S Y 2012 The effect of biocrusts on evaporation from sand dunes in the Negev Desert; Geoderma 179 104–112.CrossRef
    Kidron G J, Yaalon D H and Vonshak A 1999 Two causes for runoff initiation on microbiotic crusts: Hydrophobicity and pore clogging; Soil Sci. 164 (1) 18–27.CrossRef
    Laity J J 2009 Deserts and desert environments; John Wiley & Sons, Chichester, UK.
    Lan S B, Wu L, Zhang D L and Hu C X 2012 Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China); Environ. Earth Sci. 65 (1) 77–88.CrossRef
    Li X R 2012 Eco-hydrology of biological soil crusts in desert regions of China; Higher Education Press, Beijing (in Chinese).
    Li X R, Xiao H L, He M Z and Zhang J G 2006 Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions; Ecol. Eng. 28 (2) 149–157.CrossRef
    Li X R, Kong D S, Tan H J and Wang X P 2007 Changes in soil and vegetation following stabilisation of dunes in the southeastern fringe of the Tengger Desert, China; Plant Soil 300 (1–2) 221–231.CrossRef
    Li X R, Tian F, Jia R L, Zhang Z S and Liu L C 2010 Do biological soil crusts determine vegetation changes in sandy deserts? Implications for managing artificial vegetation; Hydrol. Process. 24 (25) 3621–3630.CrossRef
    Liu L C, Li S Z, Duan Z H, Wang T, Zhang Z S and Li X R 2006 Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, northwest China; J. Hydrol. 328 (1–2) 331–337.CrossRef
    Liu L C, Song Y X, Gao Y H, Wang T and Li X R 2007 Effects of microbiotic crusts on evaporation from the revegetated area in a Chinese desert; Soil Res. 45 (6) 422–427.CrossRef
    Noy-Meir I 1973 Desert ecosystems: Environment and producers; Ann. Rev. Ecol. Syst. 4 25–51.CrossRef
    Pan Y X, Wang X P and Zhang Y F 2010 Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, northern China; J. Hydrol. 387 (3–4) 265–272.CrossRef
    St. Clair L L, Johansen J R and Rushforth S R 1993 Lichens of soil crust communities in the intermountain area of the western United States; Great Basin Nat. 53 (1) 5–12.
    Verrecchia E, Yair A, Kidron G J and Verrecchia K 1995 Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western Negev Desert, Israel; J. Arid Environ. 29 (4) 427–437.CrossRef
    Wang X P, Quan G J, Pan Y X, Hu R, Zhang Y F, Tedeschi A, Basile A, Comegna A, Coppola A and Mascellis R 2013 Comparison of hydraulic behaviour of unvegetated and vegetation-stabilized sand dunes in arid desert ecosystems; Ecohydrology 6 264–274.CrossRef
    Wang X P, Young M H, Yu Z, Li X R and Zhang Z S 2007 Long-term effects of restoration on soil hydraulic properties in revegetation-stabilized desert ecosystems; Geophys. Res. Lett. 34 (24) L24S22. doi:10.​1029/​2007GL031725 .
    West N E 1990 Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions; Adv. Ecol. Res. 20 179–223.CrossRef
    Xiao B, Zhao Y G and Shao M A 2010 Characteristics and numeric simulation of soil evaporation in biological soil crusts; J. Arid Environ. 74 (1) 121–130.CrossRef
    Zhang Y F, Wang X P, Hu R, Pan Y X and Zhang H 2014 Variation of albedo to soil moisture for sand dunes and biological soil crusts in arid desert ecosystems; Environ. Earth Sci. 71 (3) 1281–1288.CrossRef
  • 作者单位:Ya-Feng Zhang (1)
    Xin-Ping Wang (1)
    Yan-Xia Pan (1)
    Rui Hu (1)

    1. Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geosciences
    Extraterrestrial Physics and Space Sciences
  • 出版者:Springer India
  • ISSN:0973-774X
文摘
Effects of biological soil crusts (BSCs) on soil evaporation is quite controversial in literature, being either facilitative or inhibitive, and therein few studies have actually conducted direct evaporation measurements. Continuous field measurements of soil water evaporation were conducted on two microlysimeters, i.e., one with sand soil collected from bare sand dune area and the other with moss-crusted soil collected from an area that was revegetated in 1956, from field capacity to dry, at the southeastern edge of the Tengger Desert. We mainly aimed to quantify the diurnal variations of evaporation rate from two soils, and further comparatively discuss the effects of BSCs on soil evaporation after revegetation. Results showed that in clear days with high soil water content (Day 1 and 2), the diurnal variation of soil evaporation rate followed the typical convex upward parabolic curve, reaching its peak around mid-day. Diurnal evaporation rate and the accumulated evaporation amount of moss-crusted soil were lower (an average of 0.90 times) than that of sand soil in this stage. However, as soil water content decreased to a moderately low level (Day 3 and 4), the diurnal evaporation rate from moss-crusted soil was pronouncedly higher (an average of 3.91 times) than that of sand soil, prolonging the duration of this higher evaporation rate stage; it was slightly higher in the final stage (Day 5 and 6) when soil moisture was very low. We conclude that the effects of moss crusts on soil evaporation vary with different evaporation stages, which is closely related to soil water content, and the variation and transition of evaporation rate between bare soil and moss-crusted soil are expected to be predicted by soil water content.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700