用户名: 密码: 验证码:
Some Like it High! Phylogenetic Diversity of High-Elevation Cyanobacterial Community from Biological Soil Crusts of Western Himalaya
详细信息    查看全文
  • 作者:Kateřina Čapková ; Tomáš Hauer ; Klára Řeháková ; Jiří Doležal
  • 关键词:Soil crusts ; Cyanobacterial diversity ; Western Himalayas ; High ; elevation ; Desert ; Phosphorus
  • 刊名:Microbial Ecology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:71
  • 期:1
  • 页码:113-123
  • 全文大小:1,146 KB
  • 参考文献:1.Kubečková K, Johansen JR, Warren SD, Sparks RL (2003) Development of immobilized cyanobacterial amendments for reclamation of microbiotic soil crusts. Algol Stud 109:341–362CrossRef
    2.Tirkey J, Adhikary SP (2005) Cyanobacteria in biological soil crusts of India. Curr Sci 89:515–521
    3.Johansen JR (1993) Cryptogamic crusts of semiarid and arid lands of North America. J Phycol 29:140–147. doi:10.​1111/​j.​0022-3646.​1993.​00140.​x CrossRef
    4.Heckman KA, Anderson WB, Wait DA (2006) Distribution and activity of hypolithic soil crusts in a hyperarid desert (Baja California, Mexico). Biol Fertil Soils 43:263–266. doi:10.​1007/​s00374-006-0104-7 CrossRef
    5.Belnap J, Harper KT (1995) Influence of cryptobitic soil crusts on lemental content of tissue of 2 desert seed plants. Arid Soil Res Rehabil 9:107–115CrossRef
    6.Belnap J, Lange O (2001) Biological soil crusts: structure, function and management. Springer Verlag, Berlin
    7.Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC, Martin AM (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B Biol Sci 275:2793–2802. doi:10.​1098/​rspb.​2008.​0808 CrossRef
    8.Lamb EG, Han S, Lanoil BD, Henry GHR, Brummell ME, Banerjee S, Siciliano SD (2011) A high arctic soil ecosystem resists long-term environmental manipulations. Glob Chang Biol 17:3187–3194. doi:10.​1111/​j.​1365-2486.​2011.​02431.​x CrossRef
    9.Ives AR, Cardinale BJ (2004) Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429:174–177. doi:10.​1038/​nature02515 CrossRef PubMed
    10.Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317:58–62. doi:10.​1126/​science.​1133258 CrossRef PubMed
    11.Janatkova K, Rehakova K, Dolezal J, Simek M, Chlumska Z, Dvorsky M, Kopecky M (2013) Community structure of soil phototrophs along environmental gradients in arid Himalaya. Environ Microbiol 15:2505–2516. doi:10.​1111/​1462-2920.​12132 CrossRef PubMed
    12.Bhattacharyya A (1989) Vegetation and climate during the last 30,000 years in Ladakh. Palaeogeogr Palaeoclimatol Palaeoecol 73:25–38. doi:10.​1016/​0031-0182(89)90042-4 CrossRef
    13.Epard J-L, Steck A (2008) Structural development of the Tso Morari ultra-high pressure nappe of the Ladakh Himalaya. Tectonophysics 451:242–264. doi:10.​1016/​j.​tecto.​2007.​11.​050 CrossRef
    14.Phillips RJ (2008) Geological map of the Karakoram fault zone, Eastern Karakoram, Ladakh, NW Himalaya. Journal of Maps: 21-37
    15.Klimes L (2003) Life-forms and clonality of vascular plants along an altitudinal gradient in E ladakh (NW Himalayas). Basic Appl Ecol 4:317–328. doi:10.​1078/​1439-1791-00163 CrossRef
    16.Klimes L, Dolezal J (2010) An experimental assessment of the upper elevational limit of flowering plants in the western Himalayas. Ecography 33:590–596. doi:10.​1111/​j.​1600-0587.​2009.​05967.​x
    17.Dvorsky M, Dolezal J, de Bello F, Klimesova J, Klimes L (2011) Vegetation types of East Ladakh: species and growth form composition along main environmental gradients. Appl Veg Sci 14:132–147. doi:10.​1111/​j.​1654-109X.​2010.​01103.​x CrossRef
    18.Klimesova J, Dolezal J, Dvorsky M, de Bello F, Klimes L (2011) Clonal growth forms in Eastern Ladakh, Western Himalayas: classification and habitat preferences. Folia Geobotanica 46:191–217. doi:10.​1007/​s12224-010-9076-3 CrossRef
    19.Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG (2010) The effect of nutrient deposition on bacterial communities in arctic tundra soil. Environ Microbiol 12:1842–1854. doi:10.​1111/​j.​1462-2920.​2010.​02189.​x CrossRef PubMed
    20.Kastovska K, Elster J, Stibal M, Santruckova H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high arctic). Microb Ecol 50:396–407. doi:10.​1007/​s00248-005-0246-4 CrossRef PubMed
    21.Zbíral J, Honsa I, Malý S (1997) Analýza půd III—jednotné pracovní postupy. ÚKZÚZ, Brno
    22.Mehlich A (1978) New extraction for soil test evaluation of phosphorus, potassium, magnesium, sodium, manganese and zinc. Commun Soil Sci Plant Anal 9:477–492. doi:10.​1080/​0010362780936682​4 CrossRef
    23.Kimbrough DE, Wakakuwa J (1991) Report of an interlaboratory study comparing EPA SW-846 method 3050(1) and an alternative method from the California Department of Health Services. queryWaste Testing and Quality Assurance : Third Volume 1075:231–244. doi:10.​1520/​stp25480s
    24.Rowel LD (1994) Soil science: methods and applications. Longman Scientific & Technical, Burnt Mill, Harlow
    25.Bischoff HW, Bold H (1963) Some soil algae from enchanted rock and related algal species. Univ Texas Publ, Phycological studies IV
    26.Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of lake fryxell (McMurdo dry valleys, antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169. doi:10.​1128/​aem.​69.​9.​5157-5169.​2003 CrossRef PubMedCentral PubMed
    27.Nubel U, GarciaPichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedCentral PubMed
    28.Wilmotte A, Vanderauwera G, Dewachter R (1993) Structure of the 16-S ribosomal-RNA of the thermophilic cyanobacterium chlorogleopsis (mastigocladus-laminosus HTF) strain PCC7518, and phylogenetic analyses. FEBS Lett 317:96–100. doi:10.​1016/​0014-5793(93)81499-p CrossRef PubMed
    29.Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.​1093/​molbev/​mst010 CrossRef PubMedCentral PubMed
    30.Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.​1093/​sysbio/​sys029 CrossRef PubMedCentral PubMed
    31.Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.​1093/​sysbio/​syq010 CrossRef PubMed
    32.Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi:10.​1093/​molbev/​msp259 CrossRef PubMed
    33.Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi:10.​1038/​nmeth.​2109 CrossRef PubMedCentral PubMed
    34.ter Braak CJF, Smilauer P (2012) CANOCO reference manual and user’s guide to CANOCO for windows. Centre for Biometry, Wageningen
    35.Jan L, Petr Š (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge
    36.Team RDC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    37.Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
    38.Rehakova K, Chlumska Z, Dolezal J (2011) Soil cyanobacterial and microalgal diversity in Dry mountains of ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microb Ecol 62:337–346. doi:10.​1007/​s00248-011-9878-8 CrossRef PubMed
    39.Mitchell RJ, Campbell CD, Chapman SJ, Cameron CM (2010) The ecological engineering impact of a single tree species on the soil microbial community. J Ecol 98:50–61. doi:10.​1111/​j.​1365-2745.​2009.​01601.​x CrossRef
    40.Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. doi:10.​1073/​pnas.​0507535103 CrossRef PubMedCentral PubMed
    41.Dvorsky M, Dolezal J, Kopecky M, Chlumska Z, Janatkova K, Altman J, de Bello F, Rehakova K (2013) Testing the stress-gradient hypothesis at the roof of the world: effects of the cushion plant thylacospermum caespitosum on species assemblages. Plos One 8(1):e53514. doi:10.​1371/​journal.​pone.​0053514 CrossRef PubMedCentral PubMed
    42.Dor I, Danin A (2001) Life strategies of Microcoleus vaginatus: A crust-forming cyanophyte on desert soils. Nova Hedwigia Beiheft Nova Hedwigia Beiheft Algae and extreme environments Ecology and Physiology Proceedings of the International Conference 11-16 September, Trebon, Czech Republic 123: 317-339
    43.Komárek J (2013) Cyanoprokaryota 3: Heterocytous genera. In: Budel B, Gartner G, Krienitz L, Schagerl M (eds), Süßwasserflora von Mitteleuropa (vol 19/3). Spektrum Akademischer Verlag, pp 1130
    44.Stackebrandt E, Goebel BM (1994) A place for DNA-DNA reassociation and 16S ribosomal-RNA-sequence analyses in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRef
    45.Berrendero GE, Johansen J, Kaštovský J,Bohunická M, Čapková K, (2015) Macrochaete gen. nov. (Cyanobacteria): The first step in solving the extensively polyphyletic genus Calothrix. J Phycol (under review)
    46.Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18:183–225. doi:10.​1080/​0735268999130919​9 CrossRef
    47.Ma XJ, Chen T, Zhang GS, Wang R (2004) Microbial community structure along an altitude gradient in three different localities. Folia Microbiol 49:105–111. doi:10.​1007/​bf02931382 CrossRef
    48.Balser TC, Gutknecht JLM, Liang C (2010) How will climate change impact soil microbial communities? In: Dixon GR, Emma T (eds) Soil microbiology and sustainable crop production. University of Reading Press, Reading, pp 373–397CrossRef
    49.Zelikova TJ, Housman DC, Grote EE, Neher DA, Belnap J (2012) Warming and increased precipitation frequency on the Colorado plateau: implications for biological soil crusts and soil processes. Plant Soil 355:265–282. doi:10.​1007/​s11104-011-1097-z CrossRef
    50.Lynch RC, King AJ, Farias ME, Sowell P, Vitry C, Schmidt SK (2012) The potential for microbial life in the highest-elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J Geophys Res Biogeosci 117. doi: 10.​1029/​2012jg001961
  • 作者单位:Kateřina Čapková (1) (2)
    Tomáš Hauer (1) (2)
    Klára Řeháková (2) (3)
    Jiří Doležal (1) (2)

    1. Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
    2. Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, Třeboň, 379 82, Czech Republic
    3. Institute of Hydrobiology, Biology Centre of AS CR, Na Sádkách 7, České Budějovice, 37005, Czech Republic
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Ecology
    Geoecology and Natural Processes
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1432-184X
文摘
The environment of high-altitudinal cold deserts of Western Himalaya is characterized by extensive development of biological soil crusts, with cyanobacteria as dominant component. The knowledge of their taxonomic composition and dependency on soil chemistry and elevation is still fragmentary. We studied the abundance and the phylogenetic diversity of the culturable cyanobacteria and eukaryotic microalgae in soil crusts along altitudinal gradients (4600–5900 m) at two sites in the dry mountains of Ladakh (SW Tibetan Plateau and Eastern Karakoram), using both microscopic and molecular approaches. The effects of environmental factors (altitude, mountain range, and soil physico-chemical parameters) on the composition and biovolume of phototrophs were tested by multivariate redundancy analysis and variance partitioning. Both phylogenetic diversity and composition of morphotypes were similar between Karakorum and Tibetan Plateau. Phylogenetic analysis of 16S rRNA gene revealed strains belonging to at least five genera. Besides clusters of common soil genera, e.g., Microcoleus, Nodosilinea, or Nostoc, two distinct clades of simple trichal taxa were newly discovered. The most abundant cyanobacterial orders were Oscillatoriales and Nostacales, whose biovolume increased with increasing elevation, while that of Chroococales decreased. Cyanobacterial species richness was low in that only 15 morphotypes were detected. The environmental factors accounted for 52 % of the total variability in microbial data, 38.7 % of which was explained solely by soil chemical properties, 14.5 % by altitude, and 8.4 % by mountain range. The elevation, soil phosphate, and magnesium were the most important predictors of soil phototrophic communities in both mountain ranges despite their different bedrocks and origin. The present investigation represents a first record on phylogenetic diversity of the cyanobacterial community of biological soil crusts from Western Himalayas and first record from altitudes over 5000 m.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700