用户名: 密码: 验证码:
Tunable Plasmonic Resonances in the Hexagonal Nanoarrays of Annular Aperture for Biosensing
详细信息    查看全文
  • 作者:Yuzhang Liang ; Mengdi Lu ; Shuwen Chu ; Lixia Li ; Wei Peng
  • 关键词:Nanostructures ; Metal optics ; Surface plasmon resonance ; Biological sensing and sensors
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:205-212
  • 全文大小:3,738 KB
  • 参考文献:1.Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648CrossRef
    2.Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348CrossRef
    3.Wang J, Yang L, Boriskina S, Yan B, Reinhard BM (2011) Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays. Anal Chem 83(6):2243–2249CrossRef
    4.Zhang Y, Wang J, Shen JF, Man Z, Shi W, Min C, Yuan G, Zhu S, Urbach HP, Yuan X (2014) Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface. Nano Lett 14(11):6430–6436CrossRef
    5.Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3(3):643–652CrossRef
    6.Liu CH, Hong MH, Cheung HW, Zhang F, Huang ZQ, Tan LS, Hor TSA (2008) Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance. Opt Express 16(14):10701–10709CrossRef
    7.Stewat ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521CrossRef
    8.Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857CrossRef
    9.Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6(11):709–713CrossRef
    10.Laesson EM, Alegret J, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263CrossRef
    11.Kim S, Jun JM, Choi DG, Jung HT, Yang SM (2006) Patterned arrays of Au rings for localized surface plasmon resonance. Langmuir 22(17):7109–7112CrossRef
    12.Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):67–871CrossRef
    13.Zheng YB, Yang YW, Jensen L, Fang L, Juluri BK, Flood AH, Weiss PS, Stoddart JF, Huang TJ (2009) Active molecular plasmonics: controlling plasmon resonances with molecular switches. Nano Lett 9(2):819–825CrossRef
    14.Lassiter JB, Aizpurua J, Hernandez L, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Halas NJ (2008) Close encounters between two nanoshells. Nano Lett 8(4):1212–1218CrossRef
    15.Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tenability. Nano Lett 10(8):3184–3189CrossRef
    16.Zhao W, Jiang Y (2015) Experimental demonstration of sharp Fano resonance within binary gold nanodisk array through lattice coupling effects. Opt Lett 40(1):93–96CrossRef
    17.Fedotov VA, Tsiatmas A, Shi JH, Buckingham R, de Groot P, Chen Y, Wang S, Zheludev NI (2010) Temperature control of Fano resonances and transmission in superconducting metamaterials. Opt Express 18(9):9015–9019CrossRef
    18.Lu H, Liu XM, Mao D, Wang GX (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37(18):3780–3782CrossRef
    19.Moritake Y, Kanamori Y, Hane K (2014) Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars. Opt Lett 39(13):4057–4060CrossRef
    20.Rahmani M, Luk’yanchuk B, Ng B, Tavakkoli A, Liew YF, Hong MH (2011) Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt Express 19(6):4949–4956CrossRef
    21.Rahmani M, Luk’yanchuk B, Hong MH (2013) Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 7(3):329–349CrossRef
    22.Cetin AE, Altug H (2012) Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6(11):9989–9995CrossRef
    23.Shen Y, Zou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou Z, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381
    24.Si GY, Zhao Y, Liu H, Teo S, Zhang M, Huang TJ, Danner AJ, Teng JH (2011) Annular aperture array based color filter. Appl Phys Lett 99(3):033105CrossRef
    25.Liu YJ, Si GY, Leong ESP, Xiang N, Danner AJ, Teng JH (2012) Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater 24(23):OP131–OP135CrossRef
    26.Khajavikhan M, Simic A, Katz M, Lee JH, Slutsky B, Mizrahi A, Lomakin V, Fainman Y (2012) Thresholdless nanoscale coaxial lasers. Nature 482(7384):204–207CrossRef
    27.Dahdah J, Hoblos J, Baida FI (2012) Nanocoaxial waveguide grating as quarter-wave plates in the visible range. IEEE Photonics J 4(1):87–94CrossRef
    28.Ni H, Wang M, Shen T, Zhou J (2015) Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing. ACS Nano 9(2):1913–1925CrossRef
    29.Feng HY, Luo F, Kekesi R, Granados D, Meneses-Rodriguez D, Garcia JM, Garcia-Martin A, Armelles G, Cebollada A (2014) Magnetoplasmonic nanorings as novel architectures with tunable magneto-optical activity in wide wavelength ranges. Adv Optical Mater 2(7):612–617CrossRef
    30.Yang J, Luo FF, Kao TS, Li X, Ho GW, Teng JH, Luo XG, Hong MH (2014) Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci Appl 3:e185CrossRef
    31.Lumerical Solutions. http://​www.​lumerical.​com .
    32.Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2008) Influence of material properties on extraordinary optical transmission through hole arrays. Phys Rev B 77(7):075401CrossRef
    33.Dossou K, Packirisamy M, Fontaine M (2005) Analysis of diffraction gratings by using an edge element method. J Opt Soc Am A 22(2):278–288CrossRef
    34.Couture M, Liang Y, Richard HPP, Faid R, Peng W, Masson JF (2013) Tuning the 3D plasmon field of nanohole arrays. Nanoscale 5(24):12399–12408CrossRef
    35.White IM, Fan X (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16(2):1020–1028CrossRef
  • 作者单位:Yuzhang Liang (1)
    Mengdi Lu (1)
    Shuwen Chu (1)
    Lixia Li (1)
    Wei Peng (1)

    1. College of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian, 116024, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
In this paper, we demonstrate a nanostructure sensor based on hexagonal arrays of annular aperture operating in the near-infrared wavelength range. The strong coupling interaction between propagating surface plasmons (PSP) mode and localized surface plasmons (LSP) mode in the designed structure generates two sharp spectral features under normal incidence. The mode coupling strongly enhances the electromagnetic fields and increases the interaction volume of the analyte and optical field. A high refractive index sensitivity of 623 nm/RIU is demonstrated in a wide refractive index range of 1.33 to 1.40. Due to the excitation of sharp spectral feature, as narrow as 7 nm, high figure of merits of 93 was obtained in the refractive index range, which is nearly 10 times larger than that from hole arrays and disk arrays. Furthermore, sharp spectral feature in the designed structure provides more error margin for structure parameters, which is advantageous for experimental realization of systems without requiring challenging fabrication resolution. The sensor is promising for biosensing applications with high sensitivity and low limit of detection. Keywords Nanostructures Metal optics Surface plasmon resonance Biological sensing and sensors

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700