用户名: 密码: 验证码:
Transcriptomic signature of Bexarotene (Rexinoid LGD1069) on mammary gland from three transgenic mouse mammary cancer models
详细信息    查看全文
  • 作者:Martin C Abba (1) (4)
    Yuhui Hu (1)
    Carla C Levy (1)
    Sally Gaddis (1)
    Frances S Kittrell (2)
    Yun Zhang (2)
    Jamal Hill (2)
    Reid P Bissonnette (3)
    Daniel Medina (2)
    Powel H Brown (2)
    C Marcelo Aldaz (1)
  • 刊名:BMC Medical Genomics
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:1
  • 期:1
  • 全文大小:3476KB
  • 参考文献:1. Smigal C, Jemal A, Ward E, Cokkinides V, Smith R, Howe HL, Thun M: Trends in breast cancer by race and ethnicity: update 2006. / CA Cancer J Clin 2006, 56:168-83. CrossRef
    2. Shek LL, Dodolphin W: Survival with breast cancer: the importance of estrogen receptor quantity. / Eur J Cancer Clin Oncol 1989, 25:243-50. CrossRef
    3. Shen Q, Brown PH: Transgenic mouse models for the prevention of breast cancer. / Mutat Res 2005, 576:93-10.
    4. Mehta K: Retinoids as regulators of gene transcription. / J Biol Regul Homeost Agents 2003, 17:1-2.
    5. Pemrick SM, Lucas DA, Grippo JF: The retinoid receptors. / Leukemia 1994, 8:1797-806.
    6. Wu K, Kim H, Rodriguez JL, Hilsenbeck SG, Mohsin SK, Xu X, Lamph WW, Kuhn JG, Green JE, Brown PH: Suppression of mammary tumorigenesis in transgenic mice by the RXR-selective retinoid, LGD1069. / Cancer Epidemiol Biomarkers Prev 2002, 11:467-74.
    7. Wu K, Zhang Y, Xu X, Hill J, Celestino J, Kim H, Mohsin SK, Hilsenbeck SG, Lamph WW, Bissonette R, Brown PH: The retinoid × receptor-selective retinoid, LGD prevent the development of estrogen receptor-negative mammary tumors in transgenic mice. / Cancer Res 2002, 62:6376-0.
    8. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ: Expression of the neu proto-oncogene in the mammary epithelium of transgenic mice induces metastaic disease. / Proc Natl Acad Sci USA 1992, 89:10578-2. CrossRef
    9. Green J, Shibata M, Yoshidome K, Liu M, Jorcyk C, Anver M, Wigginton J, Wiltrout R, Shibata E, Kaczmarczyk S, Wang W, Liu Z, Calvo A, Couldrey C: The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. / Oncogene 2000, 19:1020-7. CrossRef
    10. Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ, Butel JS, Medina D: A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. / Oncogene 2000, 19:1052-. CrossRef
    11. Charpentier AH, Bednarek AK, Daniel RL, Hawkins KA, Laflin KJ, Gaddis S, MacLeod MC, Aldaz CM: Effects of estrogen on global gene expression: identification of novel targets of estrogen action. / Cancer Res 2000, 60:5977-3.
    12. Aldaz CM, Hu Y, Daniel R, Gaddis S, Kittrell F, Medina D: Serial analysis of gene expression in normal p53 null mammary epithelium. / Oncogene 2002, 21:6366-376. CrossRef
    13. Audic S, Claverie J: The significance of digital gene expression profiles. / Genome Res 1997, 7:986-95.
    14. Smid M, Dorssers LCJ, Jenster G: Venn Mapping: clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes. / Bioinformatic 2003, 19:2065-071. CrossRef
    15. Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA: Identifying biological themes within lists of genes with EASE. / Genome Biol 2003, 4:R70. CrossRef
    16. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. / Genome Biol 2003, 4:R60. CrossRef
    17. Von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P: STRING: known and predicted protein-protein associations, integrated and transferred across organisms. / Nucleic Acids Res 2005, 33:D433-D437. CrossRef
    18. Von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Krüger B, Snel B, Bork P: STRING 7-recent developments in the integration and prediction of protein interactions. / Nucleic Acids Res 2007, 35:D358-D362. CrossRef
    19. Kim H, Kong G, DeNardo D, Li Y, Uray I, Pal S, Mohsin S, Hilsenbeck SG, Bissonnette R, Lamph WW, Johnson K, Brown PH: Identification of biomarkers modulated by the rexinoid LGD1069 (Bexarotene) in human breast cells using oligonucleotide arrays. / Cancer Res 2006, 66:12009-8. CrossRef
    20. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW: Gene expression profiles in normal and cancer cells. / Science 1997, 276:1268-272. CrossRef
    21. Nacht M, Ferguson AT, Zhang W, Petroziello JM, Cook BP, Gao YH, Maguire S, Riley D, Coppola G, Landes GM, Madden SL, Sukumar S: Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. / Cancer Res 1999, 59:5464-470.
    22. Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR, Riggins G, Polyak K: A SAGE (Serial Analysis of Gene Expression) view of breast tumor progression. / Cancer Res 2001, 61:5697-702.
    23. Abba MC, Drake JA, Hawkins KA, Hu Y, Sun H, Notcovich C, Gaddis S, Sahin A, Baggerly K, Aldaz CM: Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. / Breast Cancer Res 2004, 6:R499-R513. CrossRef
    24. Hu Y, Sun H, Drake J, Kittrell F, Abba MC, Deng L, Gaddis S, Sahin A, Baggerly K, Medina D, Aldaz CM: From mice to humans: identification of commonly deregulated genes in mammary cancer via comparative SAGE studies. / Cancer Res 2004, 64:7748-5. CrossRef
    25. Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R, Telerman A: Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. / Proc Natl Acad Sci USA 2002, 99:14976-4981. CrossRef
    26. Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N, Allanic D, Tufino R, Argentini M, Moras D, Fiucci G, Goud B, Mirande M, Amson R, Telerman A: Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. / Proc Natl Acad Sci USA 2003, 100:13892-3897. CrossRef
    27. Warburg O: On the origin of cancer cells. / Science 1956, 123:309-14. CrossRef
    28. Ramanathan A, Wang C, Schreiber SL: Perturbationl profiling of a cell-line model of tumorigenesis by using metabolic measurements. / Proc Natl Acad Sci USA 2005, 102:5992-997. CrossRef
    29. Schulz TJ, Thierbach R, Voigt A, Drewes G, Mietzner B, Steinberg P, Pfeiffer AFH, Ristow M: Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth. / J Biol Chem 2006, 281:977-81. CrossRef
    30. Isidoro A, Martínez M, Fernández PL, Ortega AD, Santamaría G, Chamorro M, Reed JC, Cuezva JM: Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. / Biochem J 2004, 378:17-0. CrossRef
    31. Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, Cejas P, Hardisson D, Vara JAF, Belda-Iniesta C, González-Barón M, Cuezva JM: Breast carcinoma fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. / Carcinogenesis 2005, 26:2095-104. CrossRef
    32. Dey R, Moraes CT: Lack of oxidative phosphorylation and lowmitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. / J Biol Chem 2000, 275:7087-094. CrossRef
    33. Hammamieh R, Chakraborty N, Barmada M, Das R, Jett M: Expresión patterns of fatty acid binding proteins in breast cancer cells. / J Exp Ther Oncol 2005, 5:133-3.
    34. Buhlmann C, B?rchers T, Pollak M, Spener F: Fatty acid metabolism in human breast cancer cells (MCF7) transfected with heart-type fatty acid binding protein. / Mol Cell Biochem 1999, 199:41-. CrossRef
    35. Grisendi S, Mecucci C, Falini B, Pandolfi PP: Nucleophosmin and cancer. / Nature Rev Cancer 2006, 6:493-05. CrossRef
    36. Ye K: Nucleophosmin/B23, a multifunctional protein that can regulate apoptosis. / Cancer Biol Ther 2005, 4:918-23.
    37. Skaar TC, Prasad SC, Sharareh S, Lippman ME, Brunner N, Clarke R: Two-dimensional gel electrophoresis analyses identify nucleophosmin as an estrogen regulated protein associated with acquired estrogen-independence in human breast cancer cells. / J Steroid Biochem Mol Biol 1998, 67:391-02. CrossRef
    38. Jianq PS, Yung BY: Dowm-regulation of nucleophomin/B23 mRNA delays the entry of cells into mitosis. / Biochem Biophys Res Commun 1999, 257:865-0. CrossRef
    39. Wu HL, Hsu CY, Liu WH, Yunq BY: Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity. / Int J Cancer 1999, 81:923-. CrossRef
    40. Hsu CY, Yung BY: Over-expression of nucleophosmin/B23 decreases the susceptibility of human leukemia HL-60 cells to retinoic acid-induced differentiation and apoptosis. / Int J Cancer 2000, 88:392-00. CrossRef
    41. Bieche I, Lachkar S, Becette V, Cifuentes-Diaz C, Sobel A, Lidereau R, Curmi P: Overexpression of the stathmin gene in a subset of human breast cancer. / Br J Cancer 1998, 78:701-09.
    42. Barket J, Lukas J: p27 destruction:Cks1 pulls the trigger. / Nat Cell Biol 2001, 3:E95-.
    43. Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A: Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. / J Biol Chem 2003, 278:25752-. CrossRef
    44. Slotky M, Shapira M, Ben-Izhak O, Linn S, Futerman B, Tsalic M, Hershko DD: The expression of the ubiquitina ligase subunit Cks1 in human breast cancer. / Breast Cancer Res 2005, 7:R737-R744. CrossRef
    45. Liang L, Zhao M, Xu Z, Yokoyama KK, Li T: Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. / Biochem J 2003, 370:195-03. CrossRef
    46. Inohara N, Koseki T, Chen S, Wu X, Nú?ez G: CIDE, a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor. / EMBO J 1998, 17:2526-533. CrossRef
    47. Morita K, Furuse M, Fujimoto K, Tsukita S: Claudin multigene family encoding four-transmembrane domain protein components of tigh junction strands. / Proc Natl Acad Sci USA 1999, 96:511-16. CrossRef
    48. Agarwal R, D'Souza T, Morin PJ: Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. / Cancer Res 2005, 65:7378-385. CrossRef
    49. Long H, Crean CD, Lee WH, Cummings OW, Gabig TG: Expression of Clostridium perfringes enetrotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. / Cancer Res 2001, 61:7878-881.
    50. Rangel LBA, Agarwal R, D'Souza T, Pizer ES, Alò PL, Lancaster WD, Gregoire L, Schwartz DR, Cho KR, Morin PJ: Tight junction proteins Claudin-3 and Claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. / Clin Cancer Res 2003, 9:2567-575.
    51. Hewitt KJ, Agarwal R, Morin PJ: The claudin gene family: expression in normal and neoplastic tissues. / BMC Cancer 2006, 6:186. CrossRef
    52. Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, Scurry J, Scolyer RA, Davies MJ, Heinzelmann M, Kalish LH, Bali A, Kench JG, Edwards LS, Bergh PM, Hacker NF, Sutherland RL, O'Brien PM: Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. / Clin Cancer Res 2004, 10:4427-436. CrossRef
    53. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1755-8794/1/40/prepub
  • 作者单位:Martin C Abba (1) (4)
    Yuhui Hu (1)
    Carla C Levy (1)
    Sally Gaddis (1)
    Frances S Kittrell (2)
    Yun Zhang (2)
    Jamal Hill (2)
    Reid P Bissonnette (3)
    Daniel Medina (2)
    Powel H Brown (2)
    C Marcelo Aldaz (1)

    1. Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, 78957, TX, USA
    4. CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
    2. Breast Center, Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, 77030, TX, USA
    3. Department of Molecular Oncology, Ligand Pharmaceuticals Inc., San Diego, California, 92121, USA
  • ISSN:1755-8794
文摘
Background The rexinoid bexarotene (LGD1069, Targretin) is a highly selective retinoid × receptor (RXR) agonist that inhibits the growth of pre-malignant and malignant breast cells. Bexarotene was shown to suppress the development of breast cancer in transgenic mice models without side effects. The chemopreventive effects of bexarotene are due to transcriptional modulation of cell proliferation, differentiation and apoptosis. Our goal in the present study was to obtain a profile of the genes modulated by bexarotene on mammary gland from three transgenic mouse mammary cancer models in an effort to elucidate its molecular mechanism of action and for the identification of biomarkers of effectiveness. Methods Serial analysis of gene expression (SAGE) was employed to profile the transcriptome of p53-null, MMTV-ErbB2, and C3(1)-SV40 mammary cells obtained from mice treated with bexarotene and their corresponding controls. Results This resulted in a dataset of approximately 360,000 transcript tags representing over 20,000 mRNAs from a total of 6 different SAGE libraries. Analysis of gene expression changes induced by bexarotene in mammary gland revealed that 89 genes were dysregulated among the three transgenic mouse mammary models. From these, 9 genes were common to the three models studied. Conclusion Analysis of the indicated core of transcripts and protein-protein interactions of this commonly modulated genes indicate two functional modules significantly affected by rexinoid bexarotene related to protein biosynthesis and bioenergetics signatures, in addition to the targeting of cancer-causing genes related with cell proliferation, differentiation and apoptosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700