用户名: 密码: 验证码:
Synthesis, characterization, and solution behavior of well-defined double hydrophilic linear amphiphilic poly (N-isopropylacrylamide)-b-poly (ε-caprolactone)-
详细信息    查看全文
  • 作者:Avnish Kumar Mishra (1)
    Niraj Kumar Vishwakarma (1)
    Vijay Kumar Patel (1)
    Chandra Sekhar Biswas (1)
    Tapas Kumar Paira (2)
    Tarun Kumar Mandal (2)
    Pralay Maiti (3)
    Biswajit Ray (1)
  • 关键词:ABA type ; Dihydrophilic ; Amphiphilic ; PNIPAAm ; b ; PCL ; b ; PNIPAAm ; Triblock ; Copolymer
  • 刊名:Colloid & Polymer Science
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:292
  • 期:6
  • 页码:1405-1418
  • 全文大小:
  • 参考文献:1. Ouchi M, Terashima T, Sawamoto M (2009) Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev 109:4963-050 CrossRef
    2. Yamago S (2009) Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain transfer agents. Chem Rev 109:5051-068 CrossRef
    3. Almgren M, Brown W, Hvidt S (1995) Self-aggregation and phase behavior of poly (ethylene oxide )-poly (propylene oxide)-poly (ethylene oxide) block copolymers in aqueous solution. Colloid Polym Sci 273:2-5 CrossRef
    4. Alexandridis P, Holzwarth JF (1997) Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (Poloxamer). Langmuir 13:6074-082 CrossRef
    5. Stephan F, Markus A (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195-17 CrossRef
    6. Alexandridis P, Nivaggioli T, Hatton TA (1995) Temperature effects on structural properties of Pluronic P104 and F108 PEO-PPO-PEO block copolymer solutions. Langmuir 11:1468-476 CrossRef
    7. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6:714-29 CrossRef
    8. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128:7383-389 CrossRef
    9. Chen H, Wu X, Duan H, Wang YA, Wang L, Zhang M, Mao H (2009) Biocompatible polysiloxane-containing diblock copolymer PEO-b-PgammaMPS for coating magnetic nanoparticles. ACS Appl Mater Interfaces 10:2134-140 CrossRef
    10. Shin W-J, Basarir F, Yoon T-H, Lee J-S (2009) Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly (2-vinylpyridine) block copolymer nanoparticles. Langmuir 25:3344 CrossRef
    11. Callewaert M, Gohy JF, Dupont-Gillain Ch C, Boulang-Petermann L, Rouxhet PG (2005) Surface morphology and wetting properties of surfaces coated with an amphiphilic diblock copolymer. Surf Sci 575:125-35 CrossRef
    12. Perelstein OE, Ivanov VA, Moller M, Potemkin II (2010) Designed AB copolymers as efficient stabilizers of colloidal particles. Macromolecules 43:5442-449 CrossRef
    13. Bulychev NA, Arutunov IA, Zubov VP, Verdonck B, Zhang T, Goethals EJ, Du Prez FE (2004) Block copolymers of vinyl ethers as thermo-responsive colloidal stabilizers of organic pigments in aqueous media. Macromol Chem Phys 205:24-3 CrossRef
    14. Sakai T, Alexandridis P (2005) Spontaneous formation of gold nanoparticles in poly (ethylene oxide)-poly (propylene oxide) solutions: solvent quality and polymer structure effects. Langmuir 21:8019-025 CrossRef
    15. Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379-380 CrossRef
    16. Heskins M, Guillet JE (1968) Solution properties of poly( / N-isopropylacrylamide). J Macromol Sci, Chem A2(8):1441-455 CrossRef
    17. Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly ( / N-isopropylacrylamide) and poly ( / N-isopropylmethacrylamide). J Phys Chem 93:3311-313 CrossRef
    18. Tong Z, Zeng F, Zheng X, Sato T (1999) Inverse molecular weight dependence of cloud points for aqueous poly ( / N-isopropylacrylamide) solutions. Macromolecules 32:4488-490 CrossRef
    19. de Azevedo RG, Rebelo LPN, Ramos AM, Szydlowski J, de Sousa HC, Klein J (2001) Phase behaviour of (polyacrylamides + water) solutions: concentration, pressure and isotope effects. Fluid Phase Equilib 185:189-98 CrossRef
    20. Ray B, Isobe Y, Morioka K, Habaue S, Okamoto Y, Kamigaito M, Swamoto M (2003) Synthesis of isotactic poly ( / N-isopropylacrylamide) by RAFT polymerization in the presence of Lewis acid. Macromolecules 36:543-45 CrossRef
    21. Ray B, Isobe Y, Matsumoto K, Habaue S, Okamoto Y, Kamigaito M, Swamoto M (2004) RAFT polymerization of / N-Isopropylacrylamide in the absence and presence of Y (OTf)3: simultaneous control of molecular weight and tacticity. Macromolecules 37:1702-710 CrossRef
    22. Ray B, Okamoto Y, Kamigaito M, Swamoto M, Seno K, Kanoka S, Aoshima S (2005) Effect of tacticity of poly ( / N-isopropylacrylamide) on the phase separation temperature of its aqueous solutions. Polym J 37:234-37 CrossRef
    23. Biswas CS, Patel VK, Vishwakarma NK, Mishra AK, Saha S, Ray B (2010) Synthesis and characterization of stereocontrolled poly( / N-isopropylacrylamide) hydrogel prepared in the presence of Y (OTf)3 Lewis acid. Langmuir 26:6775-782 CrossRef
    24. Biswas CS, Patel VK, Vishwakarma NK, Tiwari VK, Maiti P, Kamigaito M, Okamoto Y, Ray B (2011) Effects of tacticity and molecular weight of poly ( / N-isopropylacrylamide) on its glass transition temperature. Macromolecules 44:5822-824 CrossRef
    25. Choi C, Chae SY, Nah J-W (2006) Thermosensitive poly ( / N-isopropylacrylamide)- / b-poly ( / ε-caprolactone) nanoparticles for efficient drug delivery system. Polymer 47:4571-580 CrossRef
    26. Chang C, Wei H, Quan C-Y, Li Y-Y, Liu J, Wang Z-C, Cheng S-X, Zhang X-Z, Zhuo R-X (2008) Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery. J of Polymer Science: Part A: Polymer Chemistry 46:3048-057 CrossRef
    27. Chen W-Q, Wei H, Li S-L, Feng J, Nie J, Zhang X-Z, Zhuo R-X (2008) Fabrication of star-shaped, thermo-sensitive poly ( / N-isopropylacrylamide)–cholic acid–poly (3-caprolactone) copolymers and their self-assembled micelles as drug carriers. Polymer 49:3965-972 CrossRef
    28. Xu FJ, Li J, Yuan SJ, Zhang ZX, Kang ET, Neoh KG (2008) Thermo-responsive porous membranes of controllable porous morphology from triblock copolymers of polycaprolactone and poly ( / N-isopropylacrylamide) prepared by atom transfer radical polymerization. Biomacromolecules 9:331-39 CrossRef
    29. Li L, Yang X, Liu F, Shang J, Yan G, Li W (2009) Thermosensitive poly ( / N-isopropylacrylamide)- / b-polycaprolact one- / b-poly ( / N-isopropylacrylamide) triblock copolymers prepared via atom transfer radical polymerization for control of cell adhesion and detachment. J Chil Chem Soc 54:4
    30. Wan X, Liu T, Liu S (2011) Synthesis of amphiphilic tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization directly initiating from cyclic precursors and their application as drug nanocarriers. Biomacromolecules 12:1146-154 CrossRef
    31. Patel VK, Mishra AK, Viswakarma NK, Biswas CS, Ray B (2010) (S)-2-(ethyl propionate)-( / O-ethyl xanthate) and (S)-2-(ethyl isobutyrate)-( / O-ethyl xanthate)-mediated RAFT polymerization of / N-vinylpyrrolidone. Polym Bull 65:97-10 CrossRef
    32. Mishra AK, Patel VK, Viswakarma NK, Biswas CS, Raula M, Misra A, Mandal TK, Ray B (2011) Synthesis of well-defined amphiphilic poly ( / ε-caprolactone)- / b-poly ( / N-vinylpyrrolidone) block copolymers via the combination of ROP and xanthate-mediated raft polymerization. Macromolecules 44:2465-473 CrossRef
    33. Paira TK, Banerjee S, Raula M, Kotal A, Si S, Mandal TK (2010) Peptide-polymer bioconjugates via atom transfer radical polymerization and their solution aggregation into hybrid micro/nanospheres for dye uptake. Macromolecules 43:4050-061 CrossRef
    34. Ramesh K, Mishra AK, Patel VK, Viswakarma NK, Biswas CS, Paira TK, Mandal TK, Maiti P, Misra N, Ray B (2012) Synthesis of well-defined amphiphilic poly (d , l -Lactide)- / b-poly ( / N-vinylpyrrolidone) block copolymers using ROP and xanthate-mediated RAFT polymerization. Polymer 53:5743-753 CrossRef
    35. ?těpánek P, (1993) In dynamic light scattering—the method and some applications; Brown, W., Ed.; Clarendon: Boston; pp177-241.
    36. Chu B (1991) Laser light scattering: basic principles and practices; 2nd ed. Academic, New York, p 1361
    37. Cheng J, Ding J-X, Wang Y-C, Wang J (2008) Synthesis and characterization of star-shaped block copolymer of poly-( / ε-caprolactone) and poly(ethyl ethylene phosphate) as drug carrier. Polymer 49:4784-790 CrossRef
    38. Sheng YJ, Wang TY, Chen WM, Tsao HK (2007) A-B diblock copolymer micelles: effects of soluble-block length and component compatibility. J Phys Chem B 111:10938-0945 CrossRef
    39. Forster S, Zisens M, Wenz E, Antonietti M (1996) Micellization of strongly segregated block copolymers. J Chem Phys B 104:9956-970 CrossRef
    40. Chung TW, Cho KY, Lee HC, Nah JW, Yeo JH, Akaike T, Cho CS (2004) Novel micelle-forming block copolymer composed of poly ( / ε-caprolactone) and poly (vinyl pyrrolidone). Polymer 45:1591-597 CrossRef
    41. Persenaire O, Alexandre M, Degee P, Dubois P (2001) Mechanisms and kinetics of thermal degradation of poly ( / ε-caprolactone). Biomacromolecules 2:288-94 CrossRef
    42. Kim SJ, Park SJ, Kim IY, Chung TD, Kim HC, Kim SI (2003) Thermal characteristics of interpenetrating polymer networks composed of poly (vinyl alcohol) and poly ( / N-isopropylacrylamide). J Appl Polym Sci 90:881-85 CrossRef
    43. Chatani Y, Okita Y, Tadokoro H, Yamashita Y (1970) Structural studies of polyesters. III. Crystal structure of poly- / ε-caprolactone. Polym J 1:555-62 CrossRef
    44. Nojima S, Ohguma Y, Kadena K-I, Takashi I, Iwasaki Y, Yamaguchi K (2010) Crystal orientation of poly ( / ε-caprolactone) Homopolymers confined in cylindrical nanodomains. Macromolecules 43:3916-923 CrossRef
    45. Lin I-H, Cheng CC, Yen YC, Chang FC (2010) Synthesis and assembly behavior of heteronucleobase-functionalized poly( / ε-caprolactone). Macromolecules 43:1245-252 CrossRef
    46. Martins-Franchetti SM, Egerton TA, White JR (2010) Morphological changes in poly(caprolactone)/poly (vinyl chloride) blends caused by biodegradation. J Polym Environ 18:79-3 CrossRef
  • 作者单位:Avnish Kumar Mishra (1)
    Niraj Kumar Vishwakarma (1)
    Vijay Kumar Patel (1)
    Chandra Sekhar Biswas (1)
    Tapas Kumar Paira (2)
    Tarun Kumar Mandal (2)
    Pralay Maiti (3)
    Biswajit Ray (1)

    1. Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
    2. Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
    3. School of Material Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
  • ISSN:1435-1536
文摘
Well-defined linear dihydrophilic amphiphilic ABA-type triblock copolymers of ε-caprolactone (CL) and N-isopropylacrylamide (NIPAAm) have successfully been synthesized with a high yield by combining the ring opening polymerization (ROP) and xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization methods. The resulted block copolymer shows the formation of micelles in water as supported by light scattering. The critical micelle concentration (cmc) value of the micelle increases with the increase in the chain length of the poly (N-isopropylacrylamide) (PNIPAAm) block. Cloud point of the block copolymers decreases with the decrease in the PNIPAAm chain length. The TGA analysis shows a one-step degradation and a lower thermal stability of the triblock copolymer than the PNIPAAm. The DSC analysis of the triblock copolymer shows the lowering of glass transition temperature (T g), and melting temperature (T m) peaks possibly due to the partial miscibility of the poly (ε-caprolactone) (PCL) block with the amorphous PNIPAAm block through the interaction of ester groups of PCL with the amide groups of PNIPAAm. The XRD pattern of the triblock copolymer shows a broad peak due to the suppression of the crystallization of PCL block owing to the mixing of PNIPAAm block with the PCL block.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700