用户名: 密码: 验证码:
From leaf explants to hanging rooted plantlets in a mist reactor
详细信息    查看全文
  • 作者:Liwen Fei ; Pamela Weathers
  • 关键词:Mist bioreactor ; Poly ; l ; lysine ; Adhesion ; Micropropagation ; Plant tissue culture ; Artemisia annua
  • 刊名:Plant Cell, Tissue and Organ Culture
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:124
  • 期:2
  • 页码:265-274
  • 全文大小:955 KB
  • 参考文献:Adelberg J (2006) Agitated, thin-films of liquid media for efficient micropropagation. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering, vol 6. Focus on biotechnology. Springer, Netherlands, pp 101–117
    Adelberg J, Fári MG (2010) Applied physiology and practical bioreactors for plant propagation. Propag Ornam Plants 10:205–219
    Afreen F (2006) Temporary immersion bioreactor-engineering considerations and applications in plant micropropagation. In: Dutta Gupta S, Ibaraki Y (eds) Plant tissue culture engineering, vol 6. Focus on biotechnology. Springer, Heidelberg, pp 187–201
    Alam P, Abdin MZ (2011) Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep 30:1919–1928. doi:10.​1007/​s00299-011-1099-6 CrossRef PubMed
    Alister BM, Finnie J, Watt MP, Blakeway F (2005) Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi forests (SA). In: Hvoslef-Eide A, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 425–442CrossRef
    Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for use liquid medium in mass propagation. Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 165–195CrossRef
    Correll MJ, Wu Y, Weathers PJ (2001) Controlling hyperhydration of carnations (Dianthus caryophyllus L.) grown in a mist reactor. Biotechnol Bioeng 71:307–314. doi:10.​1002/​1097-0290(2000)71:​4<307:​AID-BIT1019>3.​0.​CO;2-9 CrossRef
    Davis HE, Rosinski M, Morgan JR, Yarmush ML (2004) Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J 86:1234–1242. doi:10.​1016/​S0006-3495(04)74197-1 PubMedCentral CrossRef PubMed
    Dewir Y, Indoliya Y, Chakrabarty D, Paek K-Y (2014) Biochemical and physiological aspects of hyperhydricity in liquid culture system. In: Paek K-Y, Murthy HN, Zhong J-J (eds) Production of biomass and bioactive compounds using bioreactor technology. Springer, Netherlands, pp 693–709
    Dicosmo F, Facchini PJ, Neumann AW (1989) Plant cell adhesion to polymer surfaces as predicted by a thermodynamic model and modified by electrostatic interaction. Colloids Surf 42:255–269. doi:10.​1016/​0166-6622(89)80195-7 CrossRef
    Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int J Plant Sci 155:365–372CrossRef
    Facchini P, DiCosmo F, Radvanyi L, Giguere Y (1988a) Adhesion of Catharanthus roseus cells to surfaces: effect of substrate hydrophobicity. Biotechnol Bioeng 32:935–938. doi:10.​1002/​bit.​260320716 CrossRef PubMed
    Facchini P, Neumann A, DiCosmo F (1988b) Thermodynamic aspects of plant cell adhesion to polymer surfaces. Appl Microbiol Biotechnol 29:346–355. doi:10.​1007/​BF00265818 CrossRef
    Facchini PJ, Wilhelm Neumann A, DiCosmo F (1989) Adhesion of suspension-cultured Catharanthus roseus cells to surfaces: effect of pH, ionic strength, and cation valency. Biomaterials 10:318–324. doi:10.​1016/​0142-9612(89)90072-0 CrossRef PubMed
    Fei L, Weathers P (2014) From cells to embryos to rooted plantlets in a mist bioreactor. Plant Cell, Tissue Organ Cult 116:37–46. doi:10.​1007/​s11240-013-0380-5 CrossRef
    Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621. doi:10.​1002/​elsc.​201300166 CrossRef
    González E (2005) Mass propagation of tropical crops in temporary immersion systems. In: Hvoslef-Eide A, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 197–211CrossRef
    Gopinath B, Gandhi K, Saravanan S (2014) In vitro propagation of an important medicinal plant Artemisia annua L. from axillary bud explants. Adv Appl Sci Res 5:254–258
    Hahn EJ, Paek KY (2005) Multiplication of Chrysanthemum shoots in bioreactors as affected by culture method and inoculation density of single node stems. In: Hvoslef-Eide A, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 143–153CrossRef
    Hailu T, Abera B, Mariam G (2014) In vitro mass propagation of Artemisia (Artemisia annua L.) cv: anamed. Plant Tissue Cult Biotechnol 23:165–176. doi:10.​3329/​ptcb.​v23i2.​17518 CrossRef
    Han J, Wang H, Ye H, Liu Y, Li Z, Zhang Y, Zhang Y, Yan F, Li G (2005) High efficiency of genetic transformation and regeneration of Artemisia annua L. via Agrobacterium tumefaciens-mediated procedure. Plant Sci 168:73–80. doi:10.​1016/​j.​plantsci.​2004.​07.​020 CrossRef
    Hong G, Hu W, Li J, Chen X, Wang L (2009) Increased accumulation of artemisinin and anthocyanins in Artemisia annua expressing the Arabidopsis blue light receptor CRY1. Plant Mol Biol Rep 27:334–341. doi:10.​1007/​s11105-008-0088-6 CrossRef
    Huang TK, McDonald KA (2012) Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30:398–409. doi:10.​1016/​j.​biotechadv.​2011.​07.​016 CrossRef PubMed
    Jamaleddine Z, Lyam P, Fajimi O, Giwa A, Aina A, Lawyer E, Okere A, Odofin W (2013) In vitro growth response of Artemisia annua seeds to different concentrations of plant growth regulators. Afr J Biotechnol 10:17841–17844. doi:10.​5897/​AJB10.​1289
    Janarthanam B, Rashmi P, Sumathi E (2012) Rapid and efficient plant regeneration from nodal explants of Artemisia annua L. Plant Tissue Cult Biotechnol 22:33–39. doi:10.​3329/​ptcb.​v22i1.​11257 CrossRef
    Jarvis BC (1986) Endogenous control of adventitious rooting in non-woody cuttings. In: Jackson M (ed) New root formation in plants and cuttings, vol 20. Developments in Plant and Soil Sciences. Springer, Netherlands, pp 191–222CrossRef
    Lane WD (1979) Regeneration of pear plants from shoot meristem-tips. Plant Sci Lett 16:337–342. doi:10.​1016/​0304-4211(79)90046-4 CrossRef
    Lin X, Zhou Y, Zhang J, Lu X, Zhang F, Shen Q, Wu S, Chen Y, Wang T, Tang K (2011) Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway. Biotechnol Appl Biochem 58:50–57. doi:10.​1002/​bab.​13 CrossRef PubMed
    Lorenzo J, González B, Escalona M, Teisson C, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell, Tissue Organ Cult 54:197–200. doi:10.​1023/​a:​1006168700556 CrossRef
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.​1111/​j.​1399-3054.​1962.​tb08052.​x CrossRef
    Nguyen K, Towler M, Weathers P (2013) The effect of roots and media constituents on trichomes and artemisinin production in Artemisia annua L. Plant Cell Rep 32:207–218. doi:10.​1007/​s00299-012-1355-4 PubMedCentral CrossRef PubMed
    Roels S, Escalona M, Cejas I, Noceda C, Rodriguez R, Canal MJ, Sandoval J, Debergh P (2005) Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell, Tissue Organ Cult 82:57–66. doi:10.​1007/​s11240-004-6746-y CrossRef
    Roels S, Noceda C, Escalona M, Sandoval J, Canal MJ, Rodriguez R, Debergh P (2006) The effect of headspace renewal in a temporary immersion bioreactor on plantain (Musa AAB) shoot proliferation and quality. Plant Cell, Tissue Organ Cult 84:155–163. doi:10.​1007/​s11240-005-9013-y CrossRef
    Ruffoni B, Pistelli L, Bertoli A, Pistelli L (2010) Plant cell cultures: bioreactors for industrial production. In: Giardi M, Rea G, Berra B (eds) Bio-farms for nutraceuticals, vol 698. Advances in experimental medicine and biology. Springer, US, pp 203–221CrossRef
    Sharma G, Agrawal V (2013) Marked enhancement in the artemisinin content and biomass productivity in Artemisia annua L. shoots co-cultivated with Piriformospora indica. World J Microbiol Biotechnol 29:1133–1138. doi:10.​1007/​s11274-013-1263-y CrossRef PubMed
    Singh G, Shetty S (2011) Impact of tissue culture on agriculture in India. Biotechnol Bioinform Bioeng 1:279–288
    Steingroewer J, Bley T, Georgiev V, Ivanov I, Lenk F, Marchev A, Pavlov A (2013) Bioprocessing of differentiated plant in vitro systems. Eng Life Sci 13:26–38. doi:10.​1002/​elsc.​201100226 CrossRef
    Sudha CG, George M, Rameshkumar KB, Nair GM (2012) Improved clonal propagation of Alpinia calcarata Rosc., a commercially important medicinal plant and evaluation of chemical fidelity through comparison of volatile compounds. Am J Plant Sci 3:930. doi:10.​4236/​ajps.​2012.​37110 CrossRef
    Takayama S, Akita M (2006) Bioengineering aspects of bioreactor application in plant propagation. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering, vol 6. Focus on biotechnology. Springer, Netherlands, pp 83–100
    Towler MJ, Weathers PJ (2003) Adhesion of plant roots to poly-l -lysine coated polypropylene substrates. J Biotechnol 101:147–155. doi:10.​1016/​S0168-1656(02)00319-X CrossRef PubMed
    Tyler RT, Kurz WGW, Paiva NL, Chavadej S (1995) Bioreactors for surface-immobilized cells. Plant Cell, Tissue Organ Cult 42:81–90. doi:10.​1007/​BF00037685 CrossRef
    Watt MP (2012) The status of temporary immersion system (TIS) technology for plant micropropagation. Afr J Biotechnol 11:14025–14035. doi:10.​5897/​AJB12.​1693
    Weathers PJ, Towler MJ (2012) The flavonoids casticin and artemetin are poorly extracted and are unstable in an Artemisia annua tea infusion. Planta Med 78:1024–1026PubMedCentral CrossRef PubMed
    Weathers PJ, Towler MJ, Xu JF (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351. doi:10.​1007/​s00253-009-2354-4 CrossRef PubMed
    Welander M, Persson J, Asp H, Zhu LH (2014) Evaluation of a new vessel system based on temporary immersion system for micropropagation. Sci Hortic 179:227–232. doi:10.​1016/​j.​scienta.​2014.​09.​035 CrossRef
    Wilken D, Gonzalez EJ, Gerth A, Gómez-Kosky R, Schumann A, Claus D (2014) Effect of immersion systems, lighting, and TIS designs on biomass increase in micropropagating banana (Musa spp. cv’.Grande naine’AAA). In Vitro Cell Dev Biol Plant 50:582–589. doi:10.​1007/​s11627-014-9605-5 CrossRef
    Yan H, Liang C, Li Y (2010) Improved growth and quality of Siraitia grosvenorii plantlets using a temporary immersion system. Plant Cell, Tissue Organ Cult 103:131–135. doi:10.​1007/​s11240-010-9752-2 CrossRef
    Yan H, Yang L, Li Y (2013) Improved growth and quality of Dioscorea fordii Prain et Burk and Dioscorea alata plantlets using a temporary immersion system. Afr J Biotechnol 10:19444–19448. doi:10.​5897/​AJB11.​2684
    Yang SH, Yeh DM (2008) In vitro leaf anatomy, ex vitro photosynthetic behaviors and growth of Calathea orbifolia (Linden) Kennedy plants obtained from semi-solid medium and temporary immersion systems. Plant Cell, Tissue Organ Cult 93:201–207. doi:10.​1007/​s11240-008-9363-3 CrossRef
    Yang J, Piao X, Sun D, Lian M (2010) Production of protocorm-like bodies with bioreactor and regeneration in vitro of Oncidium‘Sugar Sweet’. Sci Hortic 125:712–717. doi:10.​1016/​j.​scienta.​2010.​05.​003 CrossRef
    Zia M, Rehman R, Chaudhary MF (2007) Hormonal regulation for callogenesis and organogenesis of Artemisia absinthium L. Afr J Biotechnol 6:1874–1878. doi:10.​5897/​AJB2007.​000-2281
  • 作者单位:Liwen Fei (1)
    Pamela Weathers (1)

    1. Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5044
文摘
A mist bioreactor using a disposable bag as a culture chamber was used to propagate single nodal explants of Artemisia annua into rooted plantlets that were ready for soil using a single batch (one-step) culture. To vertically scale plant growth inside the mist reactor, poly-l-lysine (PLL)-coated 70 µm nylon mesh and solid polypropylene sheeting were used for explant attachment. Both manually chopped and blender-chopped (blenderized) shoot tissues were attached to PLL-coated substrates. Compared to blenderized shoots, manually chopped tissues were larger with better attachment to PLL-coated substrates. Regardless of substrates or explant preparation method, 80–95 % of initially attached shoot tissues remained attached to PLL-coated surfaces after being misted with culture medium for 24 h. New shoot proliferation increased about tenfold as the size of blenderized shoot tissue increased. To reduce callusing during shoot proliferation and thus stimulate root initiation, original shooting medium was reduced to half strength of phytohormone and Murashige and Skoog salts. The duration of shoot proliferation was also reduced from 2 to 1 week. Original rooting medium was then further improved with NAA or IBA. After successive shooting, rooting and in vitro acclimatization, the nodal explants attached to PLL-coated hanging strips and developed into fully rooted plantlets in the mist reactor. Although most of the large rooted plantlets detached from the hanging strips by the time of harvest, they had fully functional stomata and were later successfully established in the soil, suggesting this “hanging garden” technology may prove useful for micropropagation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700