用户名: 密码: 验证码:
Design and Characterization of Corn Starch Edible Films Including Beeswax and Natural Antimicrobials
详细信息    查看全文
文摘
The effectiveness of edible films (EFs) used as coatings to maintain the quality and safety of fresh produce for long time depends on their functional properties characterization. This study was aimed to design and evaluate physicochemical, barrier, mechanical, and antimicrobial properties of EFs based on corn starch (acetylated cross-linked (ACLS) or oxidized (OS)), micro-emulsified beeswax (BW, 0–1 % w/w), and two natural antimicrobials (lauric arginate (LAE, 400–4000 mg/L) and natamycin (NAT, 80–800 mg/L)). EFs based on ACLS or OS made with 1 % BW microemulsion produced homogeneous EFs surface and did not show changes in thickness or opacity. Water vapor permeability (WVP, 0.57 ± 0.04 g mm m−2 h−1 kPa−1 for ACLS, and 0.56 ± 0.05 g mm m−2 h−1 kPa−1 for OS) was reduced; tensile strength (TS, 51.48 ± 5.92 MPa for ACLS, and 40.96 ± 4.98 MPa for OS), and elastic modulus (EM, 211.30 ± 7.85 MPa for ACLS, and 203.50 ± 5.35 MPa for OS) were decreased, whereas elongation at break (E, 4.59 ± 1.11 % for ACLS, and 4.76 ± 4.98 % for OS) increased. The additive effect showed by the combination of natural antimicrobials (2000 mg/L of LAE plus 400 mg/L of NAT) incorporated into EFs with 1 % BW completely inhibited Rhizopus stolonifer, Colletotrichum gloeosporioides, Botrytis cinerea, and Salmonella Saintpaul. These properties of corn starch EFs used as coatings represent an excellent alternative to extend the shelf life of fresh produce.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700