用户名: 密码: 验证码:
Synthesis of Carbon-Coated ZnO Composite and Varistor Properties Study
详细信息    查看全文
  • 作者:Wei-Jie Sun ; Jin-Ran Liu ; Da-Chuan Yao ; Yong Chen…
  • 关键词:Core–shell structure ; sol–gel ; electrical properties ; varistor
  • 刊名:Journal of Electronic Materials
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:46
  • 期:3
  • 页码:1908-1913
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Optical and Electronic Materials; Characterization and Evaluation of Materials; Electronics and Microelectronics, Instrumentation; Solid State Physics;
  • 出版者:Springer US
  • ISSN:1543-186X
  • 卷排序:46
文摘
In this article, monodisperse ZnO composite nanoparticles were successfully prepared by sol–gel mixed precursor method. Subsequently, carbon as the shell was homogeneously coated on the surface of the ZnO composite nanoparticles via a simple adsorption and calcination process. Microstructural studies of the as-obtained powders were carried out using the techniques of the x-ray powder diffraction, scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy with energy dispersive x-ray spectroscopy, and Fourier transform infrared spectroscopy. The results show that the pink ZnO composite powders were fully coated by carbon. Based on the results, the effect of glucose content on the microstructure of the synthesized composites and the electrical properties of the ZnO varistors sintered in air at 1150°C for 2 h were also fully studied. As the amount of glucose increased, the thickness of carbon can be increased from 2.5 nm to 5 nm. In particular, the ZnO varistor fabricated with the appropriate thickness of the carbon coating (5 nm) leads to the superior electrical performance, with present high breakdown voltage (Vb = 420 V/mm) and excellent nonlinear coefficient (α = 61.7), compared with the varistors obtained without carbon coating.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700