用户名: 密码: 验证码:
Magnetic resonance imaging of flow and mass transfer in electrohydrodynamic liquid bridges
详细信息    查看全文
文摘
AbstractHere, we report on the feasibility and use of magnetic resonance imaging-based methods to the study of electrohydrodynamic (EHD) liquid bridges. High-speed tomographic recordings through the longitudinal axis of water bridges were used to characterize the mass transfer dynamics, mixing, and flow structure. By filling one beaker with heavy water and the other with light water, it was possible to track the spread of the proton signal throughout the total liquid volume. The mixing kinetics are different depending on where the light nuclei are located and proceeds faster when the anolyte is light water. Distinct flow and mixing regions are identified in the fluid volumes, and it is shown that the EHD flow at the electrodes can be counteracted by the density difference between water isotopes. MR phase contrast imaging reveals that within the bridge section, two separate counter-propagating flows pass one above the other in the bridge.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700