用户名: 密码: 验证码:
Honey bee (Apis mellifera) intracolonial genetic diversity influences worker nutritional status
详细信息    查看全文
  • 作者:Bruce J. Eckholm (1)
    Ming H. Huang (2)
    Kirk E. Anderson (3)
    Brendon M. Mott (3)
    Gloria DeGrandi-Hoffman (3)

    1. 1025 Zylstra Road
    ; Coupeville ; WA ; 98239 ; USA
    2. Eurofins Agroscience Services
    ; Inc. ; 15250 NC Hwy 86 South ; Prospect Hill ; NC ; 27314 ; USA
    3. Carl Hayden Bee Research Center
    ; USDA-ARS ; 2000 East Allen Road ; Tucson ; AZ ; 85719 ; USA
  • 关键词:intracolonial genetic diversity ; extreme polyandry ; honey bee nutrition
  • 刊名:Apidologie
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:46
  • 期:2
  • 页码:150-163
  • 全文大小:391 KB
  • 参考文献:1. Alaux, C, Ducloz, F, Crauser, D, Conte, Y (2010) Diet effects on honeybee immunocompetence. Biol. Lett. 6: pp. 562-565 CrossRef
    2. Baer, B, Schmid-Hempel, P (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397: pp. 151-154 CrossRef
    3. Bitondi, M, Simoes, Z (1996) The relationship between level of pollen in the diet, vitellogenin and juvenile hormone titers in Africanized Apis mellifera workers. J. Apic. Res. 35: pp. 27-36
    4. Blakemore, D, Williams, S, Lehane, MJ (1995) Protein stimulation of trypsin secretion from the opaque zone midgut cells of Stomoxys calcitrans. Comp. Biochem. Physiol., B: Biochem. Mol Biol 110: pp. 301-307 CrossRef
    5. Cappelari, FA, Turcatto, AP, Morais, MM, Jong, D (2009) Africanized honey bees more efficiently convert protein diets into hemolymph protein than do Carniolan bees (Apis mellifera carnica). Genet. Mol. Res. 8: pp. 1245-1249 CrossRef
    6. Chapman, N, Oldroyd, B, Hughes, W (2007) Differential responses of honeybee (Apis mellifera) patrilines to changes in stimuli for the generalist tasks of nursing and foraging. Behav. Ecol. Sociobiol. 61: pp. 1185-1194 CrossRef
    7. Cole, BJ, Wiernasz, DC (1999) The selective advantage of low relatedness. Science 285: pp. 891-893 CrossRef
    8. Crailsheim, K (1986) Dependence of protein metabolism on age and season in the honeybee (Apis mellifica carnica Pollm). J. Insect Physiol. 32: pp. 629-634 CrossRef
    9. Crailsheim, K (1990) The protein balance of the honey bee worker. Apidologie 21: pp. 417-429 CrossRef
    10. Crailsheim, K (1991) Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies. J. Comp. Physiol B 161: pp. 55-60 CrossRef
    11. Crailsheim, K (1998) Trophallactic interactions in the adult honeybee. Apidologie 29: pp. 97-112 CrossRef
    12. Crailsheim, K, Schneider, LHW, Hrassnigg, N, Buhlmann, G, Brosch, U, Gmeinbauer, R, Schoffmann, B (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function. J. Insect Physiol. 38: pp. 409-419 CrossRef
    13. Cremonez, T, DeJong, D, Bitondi, M (1998) Quantification of hemolymph proteins as a fast method for testing protein diets for honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 91: pp. 1284-1269 CrossRef
    14. Cruz-Landim, C, Roat, TC, Fernadez, FC (2012) Virus present in the reproductive tract of asymptomatic drones of honey bee (Apis mellifera L.), and possible infection of queen during mating. Microsc. Res. Tech. 75: pp. 986-990 CrossRef
    15. Dadd, RH (1956) Proteolytic activity of the midgut in relation to feeding in the beetles Tenebrio molitor L. and Dytiscus marginalis L.. J. Exp. Biol 33: pp. 311-324
    16. Miranda, JR, Fries, I (2008) Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J. Invert. Pathol. 98: pp. 184-189 CrossRef
    17. DeGrandi-Hoffman, G, Eckholm, BJ, Huang, MH (2013) A comparison of bee bread made by Africanized and European honey bees (Apis mellifera) and its effects on hemolymph protein titers. Apidologie 44: pp. 52-63 CrossRef
    18. Dreller, C (1998) Division of labor between scouts and recruits: genetic influence and mechanisms. Behav. Ecol. Sociobiol. 43: pp. 191-196 CrossRef
    19. Eckholm, BJ, Anderson, KE, Weiss, M, DeGrandi-Hoffman, G (2011) Intracolonial genetic diversity in honeybee (Apis mellifera) colonies increases pollen foraging efficiency. Behav. Ecol. Sociobiol. 65: pp. 1037-1044 CrossRef
    20. Fluri, P, Luscher, M, Wille, H, Gerig, L (1982) Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 28: pp. 61-68 CrossRef
    21. Frumhoff, PC, Baker, J (1988) A genetic component to division of labour within honey bee colonies. Nature 333: pp. 358-361 CrossRef
    22. Fuchs, S, Schade, V (1994) Lower performance in honeybee colonies of uniform paternity. Apidologie 25: pp. 155-168 CrossRef
    23. Giray, T, Guzm谩n-Novoa, E, Aron, CW, Zelinsky, B, Fahrbach, SE, Robinson, GE (2000) Genetic variation in worker temporal polyethism and colony defensiveness in the honey bee. Apis mellifera. Behav. Ecol. 11: pp. 44-55 CrossRef
    24. Goodisman, MAD, Kovacs, JL, Hoffman, EA (2007) The significance of multiple mating in the social wasp Vespula maculifrons. Evolution 61: pp. 2260-2267 CrossRef
    25. Haberl, M, Moritz, RFA (1994) Estimation of intracolonial worker relationship in a honey bee colony (Apis mellifera L.) using DNA fingerprinting. Insectes Soc 41: pp. 263-272 CrossRef
    26. Huang, ZY, Robinson, GE (1992) Honeybee colony integration: worker-worker interactions mediate hormonally regulated plasticity in division of labor. Proc. Natl. Acad. Sci. USA 89: pp. 11726-11729 CrossRef
    27. Huang, ZY, Robinson, GE (1996) Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39: pp. 147-158 CrossRef
    28. Huang, ZY, Robinson, GE Social control of division of labor in honey bee colonies. In: Detrain, C, Deneubourg, JL, Pasteels, JM eds. (1999) Information processing in social insects. Birkhauser, Basel, Switzerland, pp. 165-186 CrossRef
    29. Hughes, WOH, Boomsma, JJ (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58: pp. 1251-1260 CrossRef
    30. Hughes, WOH, Oldroyd, BP, Beekman, M, Ratnieks, FLW (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320: pp. 1213-1216 CrossRef
    31. Jones, JC, Myerscough, MR, Graham, S, Oldroyd, BP (2004) Honey bee nest thermoregulation: diversity promotes stability. Science 305: pp. 402-404 CrossRef
    32. Keller, L, Reeve, HK (1994) Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48: pp. 694-704 CrossRef
    33. Kraus, BF, Gerecke, E, Moritz, RFA (2011) Shift work has a genetic basis in honeybee pollen foragers (Apis mellifera L.). Behav. Genet. 41: pp. 323-328 CrossRef
    34. Mattila, HR, Seeley, TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317: pp. 362-364 CrossRef
    35. Mattila, HR, Seeley, TD (2010) Promiscuous honeybee queens generate colonies with a critical minority of waggle-dancing foragers. Behav. Ecol. Sociobiol. 64: pp. 875-889 CrossRef
    36. Mattila, HR, Seeley, TD (2011) Does a polyandrous honeybee queen improve through patriline diversity the activity of her colony鈥檚 scouting foragers?. Behav. Ecol. Sociobiol. 65: pp. 799-811 CrossRef
    37. Mattila, HR, Seeley, TD (2014) Extreme polyandry improves a honey bee colony鈥檚 ability to track dynamic foraging opportunities via greater activity of inspecting bees. Apidologie 45: pp. 347-363 CrossRef
    38. M眉ller, HM, Catteruccia, F, Vizioli, J, Della Torre, A, Crisanti, A (1995) Constitutive and blood meal-induced trypsin genes in Anopheles gambiae. Exp. Parasitol. 81: pp. 371-385 CrossRef
    39. Oldroyd, BP, Clifton, MJ, Parker, K, Wongsiri, S, Rinderer, TE, Crozier, RH (1998) Evolution of mating behavior in the genus Apis and an estimate of mating frequency in Apis cerana (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 91: pp. 700-709 CrossRef
    40. Oldroyd, BP, Fewell, JH (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22: pp. 408-413 CrossRef
    41. Oldroyd, BP, Rinderer, TE, Buco, SM (1992) Intra-colonial foraging specialism by honey bees (Apis mellifera) (Hymenoptera: Apidae). Behav. Ecol. Sociobiol. 30: pp. 291-295 CrossRef
    42. Oldroyd, BP, Rinderer, TE, Buco, SM, Beaman, LD (1993) Genetic variance in honey bees for preferred foraging distance. Anim. Behav. 45: pp. 323-332 CrossRef
    43. Oldroyd, BP, Rinderer, TE, Harbo, JR, Buco, SM (1992) Effects of genetic diversity on honey bee (Hymenoptera: Apidae) colony performance. Ann. Entomol. Soc. 85: pp. 335-343 CrossRef
    44. Oster, GF, Wilson, EO (1978) Caste and ecology in the social insects. Monogr. Popul. Biol. 12: pp. 1-352
    45. Palmer, KA, Oldroyd, BP (2003) Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera): further support for the parasite/pathogen hypothesis for the evolution of polyandry. Naturwissenschaften 90: pp. 265-268 CrossRef
    46. Page, RE, Laidlaw, HH (1988) Full sisters and super sisters: a terminological paradigm. Anim. Behav. 36: pp. 944-945 CrossRef
    47. Ponton, F, Wilson, K, Cotter, SC, Raubenheimer, D, Simpson, SJ (2011) Nutritional immunology: a multi-dimensional approach. PLoS Pathog. 7: pp. e1002223 CrossRef
    48. Ribbands, CR (1952) Division of labour in the honeybee community. Proc. R. Soc. Lond., B: Biol. Sci 140: pp. 32-43 CrossRef
    49. Robinson, GE (1992) Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37: pp. 637-665 CrossRef
    50. Robinson, GE, Page, RE (1988) Genetic determination of guarding and undertaking in honey-bee colonies. Nature 333: pp. 356-358 CrossRef
    51. Robinson, GE, Page, RE Genetic basis for division of labor in an insect society. In: Breed, MD, Page, RE eds. (1989) The genetics of social evolution. Westview Press, Boulder, CO, pp. 61-80
    52. Schl眉ns, H, Moritz, RFA, Neumann, P, Kryger, P, Koeniger, G (2005) Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens. Anim. Behav. 70: pp. 125-131 CrossRef
    53. Schmickl, T, Crailsheim, K (2002) How honeybees (Apis mellifera L.) change their broodcare behaviour in response to non-foraging conditions and poor pollen conditions. Behav. Ecol. Sociobiol 51: pp. 415-425 CrossRef
    54. Schmid-Hempel, P (1998) Parasites in social insects. Princeton Univ. Press, Princeton, NJ
    55. Schmid-Hempel, P (2005) Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50: pp. 529-551 CrossRef
    56. Schneider, D Physiological integration of innate immunity. In: Rolff, J, Reynolds, S eds. (2009) Insect infection and immunity: evolution, ecology, and mechanisms. Oxford University Press, Oxford, UK, pp. 106-116 CrossRef
    57. Schulz, DJ, Huang, ZY, Robinson, GE (1998) Effects of colony food shortage on behavioral development in honey bees. Behav. Ecol. Sociobiol. 42: pp. 295-303 CrossRef
    58. Seeley, TD (1985) Honeybee ecology: a study of adapatation in social life. Princeton Univ. Press, Princeton, NJ CrossRef
    59. Seeley, TD, Tarpy, DR (2007) Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. Lond., B: Biol. Sci 274: pp. 67-72 CrossRef
    60. Tarpy, DR (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc. R. Soc. Lond. B: Biol. Sci 270: pp. 99-103 CrossRef
    61. Tarpy, DR, Nielsen, R, Nielsen, DI (2004) A scientific note on the revised estimates of paternity frequency in Apis. Insectes Soc. 51: pp. 203-204 CrossRef
    62. Tarpy, DR, Page, RE (2000) No behavioral control over mating frequency in queen honey bees (Apis mellifera L.). Am. Nat. 155: pp. 820-827 CrossRef
    63. Tarpy, DR, Seeley, TD (2006) Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften 93: pp. 195-199 CrossRef
    64. Toth, AL, Kantarovich, S, Meisel, AF, Robinson, GE (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. 208: pp. 4641-4649 CrossRef
    65. Toth, AL, Robinson, GE (2005) Worker nutrition and division of labour in honeybees. Anim. Behav. 69: pp. 427-435 CrossRef
    66. Wiernasz, DC, Hines, J, Parker, DG, Cole, BJ (2008) Mating for variety increases foraging activity in the harvester ant, Pogonomyrmex occidentalis. Mol. Ecol. 17: pp. 1137-1144 CrossRef
    67. Wiernasz, DC, Perroni, CL, Cole, BJ (2004) Polyandry and fitness in the western harvester ant, Pogonomyrmex occidentalis. Mol. Ecol. 13: pp. 1601-1606 CrossRef
    68. Winston, ML (1987) The biology of the honey bee. Harvard University Press, Cambridge, MA
    69. Zakaria, ME (2007) Factors affecting on the food metabolism in some honey bee races. J. Appl. Sci. Res. 3: pp. 311-316
    70. Zar, JH (1999) Biostatistical analysis. Prentice Hall, Inc., Upper Saddle River, NJ
  • 刊物主题:Entomology; Life Sciences, general;
  • 出版者:Springer Paris
  • ISSN:1297-9678
文摘
Honey bee queens mate with multiple males resulting in high intracolonial genetic diversity among nestmates; a reproductive strategy known as extreme polyandry. Several studies have demonstrated the adaptive significance of extreme polyandry for overall colony performance and colony growth. Colonies that are more genetically diverse collect more pollen than colonies with less diversity. However, the effects of intracolonial genetic diversity on worker nutritional status are unknown. We created colonies headed by queens instrumentally inseminated with sperm from either 1 or 20 drones, then compared protein consumption, digestion, and uptake among nestmates. We found that nurse bees from colonies with multiple-drone-inseminated (MDI) queens consumed more pollen, had lower amounts of midgut tissue protease, and invested more protein into larvae than nurse bees from single-drone-inseminated (SDI) queens. Pollen foragers from MDI colonies had significantly higher hemolymph protein concentration than pollen foragers from SDI colonies. Differences in hemolymph protein concentration between nurses and pollen foragers were significantly smaller among MDI colonies than among SDI colonies. While intracolonial genetic diversity is correlated with increased foraging, our results suggest that this relationship may be driven in part by the elevated resource demands of nurse bees in genetically diverse colonies that consume and distribute more protein in response to the social context within the hive.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700