用户名: 密码: 验证码:
The expression patterns of AtBSMT1 and AtSAGT1 encoding a salicylic acid (SA) methyltransferase and a SA glucosyltransferase, respectively, in Arabidopsis plants with altered defense responses
详细信息    查看全文
  • 作者:Jong Tae Song (4)
    Yeon Jong Koo (1)
    Jong-Beum Park (4)
    Yean Joo Seo (4)
    Yeon-Jeong Cho (4)
    Hak Soo Seo (2) (3)
    Yang Do Choi (1)
  • 关键词:methyl salicylate (MeSA) ; pathogenesis ; salicylic acid (SA) ; SA glucosyltransferase (SA GT) ; SA methyltransferase (SA MT)
  • 刊名:Molecules and Cells
  • 出版年:2009
  • 出版时间:August 2009
  • 年:2009
  • 卷:28
  • 期:2
  • 页码:105-109
  • 全文大小:406KB
  • 参考文献:1. Attaran, E., Zeier, T.E., Griebel, T., and Zeier J. (2009). Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell / 21, 954鈥?71. CrossRef
    2. Baldwin, I.T., Halitschke, R., Paschold, A., von Dahl, C.C., and Preston, C.A. (2006). Volatile signaling in plant-plant interactions: 鈥渢alking trees鈥?in the genomics era. Science / 311, 812鈥?15. CrossRef
    3. Cao, H., Bowling, S.A., Gordon, S., and Dong, X. (1994). Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell / 6, 1583鈥?592. CrossRef
    4. Chen, F., D鈥橝uria, J.C., Tholl, D., Ross, J.R., Gershenzon, J., Noel, J.P., and Pichersky, E. (2003). An / Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J. / 36, 577鈥?88. CrossRef
    5. Dean, J., and Delaney, S. (2008). Metabolism of salicylic acid in wild-type, / ugt74f1 and / ugt74f2 glucosyltransferase mutants of / Arabidopsis thaliana. Physiol. Plant. / 132, 417鈥?25. CrossRef
    6. Dean, J., Mohammed, L.A., and Fitzpatrick, T. (2005). The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta / 221, 287鈥?96. CrossRef
    7. Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., et al. (1994). A central role of salicylic acid in plant disease resistance. Science / 266, 1247鈥?250. CrossRef
    8. Edwards, R. (1994). Conjugation and metabolism of salicylic acid in tobacco. J. Plant Physiol. / 143, 609鈥?14.
    9. Engelberth, J., Schmelz, E.A., Alborn, H.T., Cardoza, Y.J., Huang, J., and Tumlinson, J.H. (2003). Simulaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal. Biochem. / 312, 242鈥?50. CrossRef
    10. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. (1993). Requirement of salicylic acid for the induction systemic acquired resistance. Science / 261, 754鈥?56. CrossRef
    11. Kim, M.G., Kim, S.Y., Kim, W.Y., Mackey, D., and Lee, S.Y. (2008). Responses of / Arabidopsis thaliana to challenge by / Pseudomonas syringae. Mol. Cells / 25, 323鈥?31.
    12. Koo, Y.J., Kim, M.A., Kim, E.H., Song, J.T., Jung, C., Moon, J.-K., Kim, J.-H., Seo, H.S., Song, S.I., Kim, J.-K., et al. (2007). Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in / Arabidopsis thaliana. Plant Mol. Biol. / 64, 1鈥?5. CrossRef
    13. Kroczek, R.A., and Siebert, E. (1990). Optimization of Northern analysis by vaccum-blotting, RNA transfer, visualization and ultraviolet fixation. Anal. Biochem. / 184, 90鈥?5. CrossRef
    14. Lee, H.-I., and Raskin, I. (1998). Glucosylation of salicylic acid in / Nicotiana tabacum cv. Xanthi-nc. Phytopathology / 88, 692鈥?97. CrossRef
    15. Lee, H.-I., Leon, J., and Raskin, I. (1995). Biosynthesis and metabolism of salicylic acid. Proc. Natl. Acad. Sci. USA / 92, 4076鈥?079. CrossRef
    16. Loake, G., and Grant, M. (2007). Salicyllic acid in plant defense-the players and protagonists. Curr. Opin. Plant Biol. / 10, 466鈥?72. CrossRef
    17. Lim, E.-K., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J., and Bowles, D.J. (2002). The activity of / Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J. Biol. Chem. / 277, 586鈥?92. CrossRef
    18. Park, S.W., Kaimoyo, E., Kumar, D., Mosher, S., and Klessig, D.F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science / 318, 113鈥?16. CrossRef
    19. Rate, D.N., and Greenberg, J.T. (2001). The / Arabidopsis aberrant growth and death2 mutant shows resistance to / Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Plant J. / 27, 203鈥?11. CrossRef
    20. Rate, D.N., Cuenca, J.V., Bowman, G.R., and Greenberg, J.T. (1999). The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defense, and cell growth. Plant Cell / 11, 1695鈥?708. CrossRef
    21. Seskar, M., Shulaev, V., and Raskin, I. (1998). Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol. / 116, 387鈥?92. CrossRef
    22. Shulaev, V., Silverman, P., and Raskin, I. (1997). Airborne signaling by methyl salicylate in plant pathogen resistance. Nature / 385, 718鈥?21. CrossRef
    23. Song, J.T. (2006). Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in / Arabidopsis thaliana. Mol. Cells / 22, 233鈥?38.
    24. Song, J.T., Koo, Y.J., Seo, H.S., Kim, M.C., Choi, Y.D., and Kim, J.H. (2008). Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to / Pseudomonas syringae. Phytochemistry / 69, 1128鈥?134. CrossRef
    25. Vlot, A.C., Liu, P.P., Cameron, R.K., Park, S.W., Yang, Y., Kumar, D., Zhou, F., Padukkavidana, T., Gustafsson, C., Pichersky, E., et al. (2008). Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in / Arabidopsis thaliana. Plant J. / 56, 445鈥?56. CrossRef
    26. Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel F.M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature / 414, 562鈥?65. CrossRef
    27. Zhou, N., Tootle, T.L., Tsui, F., Klessig, D.F., and Glazebrook, J. (1998). PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell / 10, 1021鈥?030. CrossRef
  • 作者单位:Jong Tae Song (4)
    Yeon Jong Koo (1)
    Jong-Beum Park (4)
    Yean Joo Seo (4)
    Yeon-Jeong Cho (4)
    Hak Soo Seo (2) (3)
    Yang Do Choi (1)

    4. School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
    1. School of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, Korea
    2. Department of Plant Bioscience, Seoul National University, Seoul, 151-742, Korea
    3. Bio-MAX Institute, Seoul National University, Seoul, 151-818, Korea
  • ISSN:0219-1032
文摘
We reported previously that overexpression of a salicylic acid (SA) methyltransferase1 gene from rice (OsBSMT1) or a SA glucosyltransferase1 gene from Arabidopsis thaliana (AtSAGT1) leads to increased susceptibility to Pseudomonas syringae due to reduced SA levels. To further examine their roles in the defense responses, we assayed the transcript levels of AtBSMT1 or AtSAGT1 in plants with altered levels of SA and/or other defense components. These data showed that AtSAGT1 expression is regulated partially by SA, or nonexpressor of pathogenesis related protein1, whereas AtBSMT1 expression was induced in SA-deficient mutant plants. In addition, we produced the transgenic Arabidopsis plants with RNAi-mediated inhibition of AtSAGT1 and isolated a null mutant of AtBSMT1 and then analyzed their phenotypes. A T-DNA insertion mutation in the AtBSMT1 resulted in reduced methyl salicylate (MeSA) levels upon P. syringae infection. However, accumulation of SA and glucosyl SA was similar in both the atbsmt1 and wild-type plants, indicating the presence of another SA methyltransferase or an alternative pathway for MeSA production. The AtSAGT1-RNAi line exhibited no altered phenotypes upon pathogen infection, compared to wild-type plants, suggesting that (an)other SA glucosyltransferase(s) in Arabidopsis plants may be important for the pathogenesis of P. syringae.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700