用户名: 密码: 验证码:
Simulation of particulate fouling at a microchannel entrance region
详细信息    查看全文
  • 作者:Jeffrey S. Marshall (1)
    Simtha Renjitham (1)

    1. School of Engineering
    ; The University of Vermont ; 301 Votey Hall ; 33 Colchester Blvd. ; Burlington ; VT ; 05405 ; USA
  • 关键词:Microchannel fouling ; Discrete ; element method ; Particle adhesion ; Entrance region
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:18
  • 期:2
  • 页码:253-265
  • 全文大小:1,352 KB
  • 参考文献:1. Allievi A, Bermejo R (1997) A generalized particle search-locate algorithm for arbitrary grids. J Comput Phys 132:157鈥?66 CrossRef
    2. Bacchin P, Marty A, Duru P, Meireles M, Aimar P (2011) Colloidal surface interactions and membrane fouling: investigations at pore scale. Adv Colloid Interface Sci 164:2鈥?1 CrossRef
    3. Bai B, Luo Z, Lu T, Xu F (2013) Numerical simulation of cell adhesion and detachment in microfluidics. J Mech Med Biol 13(1):13500002 CrossRef
    4. Bergendahl J, Grasso D (2000) Prediction of colloid detachment in a model porous media: hydrodynamics. Chem Eng Sci 55:1523鈥?532 CrossRef
    5. Chesnutt JKR (2009) Discrete-element model of red blood cell aggregation in blood flow. Ph.D. dissertation, University of Iowa, Iowa City, Iowa, USA
    6. Chokshi A, Tielens AGGM, Hollenbach D (1993) Dust coagulation. Astrophys J 407:806鈥?19 CrossRef
    7. Dahneke B (1971) The capture of aerosol particles by surfaces. J Colloid Interface Sci 37(2):342鈥?53 CrossRef
    8. Di Felice R (1994) The voidage function for fluid-particle interaction systems. Int J Multiph Flow 20:153鈥?59 CrossRef
    9. Ding W, Zhang H, Cetinkaya C (2008) Rolling resistance moment-based adhesion characterization of microspheres. J Adhes 84:996鈥?006 CrossRef
    10. Dominik C, Tielens AGGM (1995) Resistance to rolling in the adhesive contact of two elastic spheres. Philos Mag A 92(3):783鈥?03 CrossRef
    11. Ferry J, Balachandar S (2001) A fast Eulerian method for disperse two-phase flow. Int J Multiph Flow 27:1199鈥?226 CrossRef
    12. Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B 14:105鈥?19 CrossRef
    13. Huang B, Yao Q, Li SQ, Zhao HL, Song Q, You CF (2006) Experimental investigation on the particle capture by a single fiber using microscopic image technique. Powder Technol 163:125鈥?33 CrossRef
    14. Israelachvili J (1991) Intermolecular and surface forces, 2nd edn. Academic Press, London
    15. Issa R (1985) Solution of the implicit discretized fluid flow equations by operator splitting. J Comput Phys 62:40鈥?5 CrossRef
    16. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301鈥?13 CrossRef
    17. Joseph GG, Zenit R, Hunt ML, Rosenwinkel AM (2001) Particle-wall collisions in a viscous fluid. J Fluid Mech 433:329鈥?46 CrossRef
    18. Kim M-G, Kim Y-H, Park CW, Kim H-L, Kang D-H, Hwang J, Kim Y-J (2013) An integrated microchannel with continuous electrodynamic anti-adhesion capability for particle loss reduction in air-based microfluidic chips. J Adhes Sci Technol 27(23):2517鈥?530 CrossRef
    19. King MR, Leighton DT (1997) Measurement of the inertial lift on a moving sphere on contact with a plane wall in a shear flow. Phys Fluids 9(5):1248鈥?255 CrossRef
    20. Konstandopoulos A (2000) Deposit growth dynamics: particle sticking and scattering phenomena. Powder Technol 109:262鈥?77 CrossRef
    21. Lai YG (2000) Unstructured grid arbitrarily shaped element method for fluid flow simulation. AIAA J 38(12):2246鈥?252 CrossRef
    22. Li Q, Kim KS (2009) Micromechanics of rough surface adhesion: a homogenized projection method. Acta Mech Solida Sin 22(5):377鈥?90 CrossRef
    23. Li SQ, Marshall JS (2007) Discrete element simulation of micro-particle deposition on a cylindrical fiber in an array. J Aerosol Sci 38:1031鈥?046 CrossRef
    24. Liu G, Marshall JS, Li SQ, Yao Q (2010) Discrete-element method for particle capture by a body in an electrostatic field. Int J Numer Meth Eng 84(13):1589鈥?612 CrossRef
    25. Marshall JS (2007) Particle aggregation and capture by walls in a particulate aerosol channel flow. J Aerosol Sci 38:333鈥?51 CrossRef
    26. Marshall JS, Li S (2014) Adhesive particle flow: a discrete element approach. Cambridge University Press, New York, pp 147鈥?50 CrossRef
    27. Marshall KC, Scott R, Mitchell R (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337鈥?48 CrossRef
    28. Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a non-uniform flow. Phys Fluids 26(4):883鈥?89 CrossRef
    29. Perry JL, Kandlikar SG (2009) Fouling and its mitigation in silicon microchannels used for IC chip cooling. Microfluid Nanofluid 5:357鈥?71 CrossRef
    30. Ramarao BV, Tien C, Mohan S (1994) Calculation of single fiber efficiencies for interception and impaction with superposed Brownian motion. J Aerosol Sci 25(2):295鈥?13 CrossRef
    31. Serayssol J-M, Davis RH (1986) The influence of surface interactions on the elastohydrodynamic collision of two spheres. J Colloid Interface Sci 114(1):54鈥?6 CrossRef
    32. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93:1591鈥?595 CrossRef
    33. Sharp KV, Adrian RJ (2005) On flow-blocking particle structures in microtubes. Microfluid Nanofluid 1:376鈥?80 CrossRef
    34. Stamm MT, Gudipaty T, Rush C, Jiang L, Zohar Y (2011) Particle aggregation rate in a microchannel due to a dilute suspension flow. Microfluid Nanofluid 11:395鈥?03 CrossRef
    35. Thornton C (1991) Interparticle sliding in the presence of adhesion. J Phys D Appl Phys 24:1942鈥?946 CrossRef
    36. Tsiang RC, Wang C-S, Tien C (1982) Dynamics of particle deposition in model fiber filters. Chem Eng Sci 37(11):1661鈥?673 CrossRef
    37. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71:239鈥?50 CrossRef
    38. Wen CY, Yu YH (1966) Mechanics of fluidization. Chem Eng Prog Symp Ser 62(62):100鈥?11
    39. White FM (2006) Viscous fluid flow, 3rd edn. McGraw-Hill, New York, p 148
    40. Wyss HM, Blair DL, Morris JF, Stone HA, Weitz DA (2006) Mechanism for clogging of microchannels. Phys Rev E 74:061402 CrossRef
    41. Yang M, Li SQ, Yao Q (2013) Mechanistic studies of initial deposition of fine adhesive particles on a fiber using discrete-element methods. Powder Technol 248:44鈥?3 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
A computational study is reported on the dynamics of particles near the entrance of a microchannel, as used in microfluidic flow systems. The collision of particles with fins separating the microchannels in these entrance regions makes them particularly susceptible to particle fouling. The study employs a soft-sphere discrete-element method with van der Waals and electric double-layer forces between the particles and the wall. A multi-block-structured grid fit to the flow domain boundaries is used to compute the fluid velocity field using a finite-volume method. The fluid flow is interpolated onto a Cartesian grid for efficient flow field interpolation at the particle locations, and a level-set method is used to represent the flow field boundaries in the particle computation. Particles adhering to the upstream face of the fin separating two microchannels are found to form clusters, which are pulled laterally by the stagnation-point flow near the fin. Even under conditions where the adhesion is sufficiently strong that there is little or no particle rolling on the fin face, the particles are still removed from the fin due to collisions with other particles. Individual particles are removed quickly from the fin face due to collision with upstream particles, whereas particle clusters have sufficient adhesion force with the fin surface that they can withstand collision with other particles for longer periods of time before they are removed in a cascade-like process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700