用户名: 密码: 验证码:
Rapid Detection of Pathogenic Bacteria from Fresh Produce by Filtration and Surface-Enhanced Raman Spectroscopy
详细信息    查看全文
  • 作者:Xiaomeng Wu ; Caiqin Han ; Jing Chen ; Yao-Wen Huang ; Yiping Zhao
  • 刊名:JOM Journal of the Minerals, Metals and Materials Society
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:68
  • 期:4
  • 页码:1156-1162
  • 全文大小:1,712 KB
  • 参考文献:1.L.R. Beuchat, J. Food Prot. 59, 204 (1996).
    2.K.R. Matthews, Microbiology of Fresh Produce (Washington, DC: American Society for Microbiology, 2006), pp. 1–19.CrossRef
    3.C.S. DeWaal and F. Bhuiya, Outbreaks by the Numbers: Fruits and Vegetables 1990–2005 (Washington, DC: Center for Science and the Public Interest, 2007).
    4.M.F. Lynch, R.V. Tauxe, and C.W. Hedberg, Epidemiol. Infect. 137, 307 (2009).CrossRef
    5.U. Buchholz, H. Bernard, D. Werber, M.M. Böhmer, C. Remschmidt, H. Wilking, Y. Deleré, M. an der Heiden, C. Adlhoch, J. Dreesman, J. Ehlers, S. Ethelberg, M. Faber, C. Frank, G. Fricke, M. Greiner, M. Höhle, S. Ivarsson, U. Jark, M. Kirchner, J. Koch, G. Krause, P. Luber, B. Rosner, K. Stark, and M. Kühne, New Engl. J. Med. 365, 1763 (2011).CrossRef
    6.C.N. Berger, S.V. Sodha, R.K. Shaw, P.M. Griffin, D. Pink, and G. Frankel, Environ. Microbiol. 12, 2385 (2010).CrossRef
    7.M.P. Doyle and M.C. Erickson, J. Appl. Microbiol. 105, 317 (2008).CrossRef
    8.L.J. Harris, J.N. Farber, L.R. Beuchat, M.E. Parish, T.V. Suslow, E.H. Garrett, and F.F. Busta, Compr. Rev. Food Sci. Food Saf. 2, 78 (2003).CrossRef
    9.CDC, Multistate Outbreak of Salmonella Typhimurium and Salmonella Newport Infections Linked to Cantaloupe (Final Update) (Atlanta: Centers for Disease Control and Prevention, 2012).
    10.CDC, Reports of Selected E. coli Outbreak Investigations (Atlanta: Centers for Disease Control and Prevention, 2014).
    11.J.T. Fox, J.S. Drouillard, X. Shi, and T.G. Nagaraja, J. Anim. Sci. 87, 1304 (2009).CrossRef
    12.S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, M.G. Casabona, C. Durmort, T. Vernet, R. Calemczuk, and T. Livache, Lab Chip 13, 4024 (2013).CrossRef
    13.R.D. Hoelzle, B. Virdis, and D.J. Batstone, Biotechnol. Bioeng. 111, 2139 (2014).CrossRef
    14.A. Huang, Z. Qiu, M. Jin, Z. Shen, Z. Chen, X. Wang, and J.W. Li, Int. J. Food Microbiol. 185, 27 (2014).CrossRef
    15.S. Furukawa, Y. Akiyoshi, G.A. O’Toole, H. Ogihara, and Y. Morinaga, Int. J. Food Microbiol. 138, 176 (2010).CrossRef
    16.H.S. Eom, B.H. Hwang, D.H. Kim, I.B. Lee, Y.H. Kim, and H.J. Cha, Biosens. Bioelectron. 22, 845 (2007).CrossRef
    17.S.E. Frima and L. Zeiri, J. Raman Spectrosc. 40, 277 (2009).CrossRef
    18.K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997).CrossRef
    19.S.M. Nie and S.R. Emery, Science 275, 1102 (1997).CrossRef
    20.S.B. Chaney, S. Shanmukh, R.A. Dluhy, and Y.P. Zhao, Appl. Phys. Lett. 87, 031908 (2005).CrossRef
    21.J.D. Driskell, S. Shanmukh, Y. Liu, S.B. Chaney, X.J. Tang, Y.P. Zhao, and R.A. Dluhy, J. Phys. Chem. C 112, 895 (2008).CrossRef
    22.S. Shanmukh, L. Jones, J. Driskell, Y.P. Zhao, R. Dluhy, and R.A. Tripp, Nano Lett. 6, 2630 (2006).CrossRef
    23.Y.P. Zhao, S.B. Chaney, S. Shanmukh, and R.A. Dluhy, J. Phys. Chem. B 110, 3153 (2006).CrossRef
    24.J.D. Driskell, Y. Zhu, C.D. Kirkwood, Y.P. Zhao, R.A. Dluhy, and R.A. Tripp, PLoS One 5, e10222 (2010).CrossRef
    25.S. Shanmukh, L. Jones, Y.P. Zhao, J. Driskell, R. Tripp, and R. Dluhy, Anal. Bioanal. Chem. 390, 1551 (2008).CrossRef
    26.H. Chu, Y. Huang, and Y. Zhao, Appl. Spectrosc. 62, 922 (2008).CrossRef
    27.X. Wu, S. Gao, J.S. Wang, H. Wang, Y.W. Huang, and Y. Zhao, Analyst 137, 4226 (2012).CrossRef
    28.X. Wu, J. Chen, B. Park, Y. Huang, and Y. Zhao, Advances in Applied Nanotechnology for Agriculture (Washington, DC: American Chemical Society, 2013), pp. 85–108.CrossRef
    29.X. Du, H. Chu, Y. Huang, and Y. Zhao, Appl. Spectrosc. 64, 781 (2010).CrossRef
    30.J.D. Driskell, A.G. Seto, L.P. Jones, S. Jokela, R.A. Dluhy, Y.P. Zhao, and R.A. Tripp, Biosens. Bioelectron. 24, 917 (2008).CrossRef
    31.X. Wu, C. Xu, R.A. Tripp, Y. Huang, and Y. Zhao, Analyst 138, 3005 (2013).CrossRef
    32.Y.J. Liu, H.Y. Chu, and Y.P. Zhao, J. Phys. Chem. C 114, 8176 (2010).CrossRef
    33.X.M. Wu, Y.W. Huang, B. Park, R.A. Tripp, and Y.P. Zhao, Talanta 139, 96 (2015).CrossRef
    34.M. Manjare and Y. Ting, Wu, B. Yang, and Y.P. Zhao. Appl. Phys. Lett. 104, 054102 (2014).CrossRef
    35.J.G. Fan and Y.P. Zhao, Langmuire 26, 8245 (2010).CrossRef
    36.D.I. Arnon, Plant Physiol. 24, 1 (1949).CrossRef
  • 作者单位:Xiaomeng Wu (1) (2)
    Caiqin Han (1) (3) (4)
    Jing Chen (1) (2)
    Yao-Wen Huang (1) (2)
    Yiping Zhao (1) (4)

    1. Nanoscale Science and Engineering Center, University of Georgia, 220 Riverbend Rd, Athens, GA, 30605, USA
    2. Department of Food Science and Technology, University of Georgia, Athens, GA, 30605, USA
    3. Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, People’s Republic of China
    4. Department of Physics and Astronomy, University of Georgia, Athens, GA, 30605, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Metallic Materials
    Nanotechnology
    Crystallography
  • 出版者:Springer Boston
  • ISSN:1543-1851
文摘
The detection of Salmonella Poona from cantaloupe cubes and E. coli O157:H7 from lettuce has been explored by using a filtration method and surface-enhanced Raman spectroscopy (SERS) based on vancomycin-functionalized silver nanorod array substrates. It is found that with a two-step filtration process, the limit of detection (LOD) of Salmonella Poona from cantaloupe cubes can be as low as 100 CFU/mL in less than 4 h, whereas the chlorophyll in the lettuce causes severe SERS spectral interference. To improve the LOD of lettuce, a three-step filtration method with a hydrophobic filter is proposed. The hydrophobic filter can effectively eliminate the interferences from chlorophyll and achieve a LOD of 1000 CFU/mL detection of E. coli O157:H7 from lettuce samples within 5 h. With the low LODs and rapid detection time, the SERS biosensing platform has demonstrated its potential as a rapid, simple, and inexpensive means for pathogenic bacteria detection from fresh produce.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700