用户名: 密码: 验证码:
Gene panel sequencing in heritable thoracic aortic disorders and related entities -results of comprehensive testing in a cohort of 264 patients
详细信息    查看全文
  • 作者:Laurence Campens ; Bert Callewaert
  • 关键词:Heritable Thoracic Aortic Disorders -next generation sequencing -Aneurysm ; Dissecting/genetics -mutation detection rate
  • 刊名:Orphanet Journal of Rare Diseases
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:1
  • 全文大小:452 KB
  • 参考文献:1. Olsson C, Thelin S, Stahle E, Ekbom A, Granath F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 2006;114:2611-. CrossRef
    2. Hoyert DL, Arias E, Smith BL, Murphy SL, Kochanek KD. Deaths: final data for 1999. Natl Vital Stat Rep. 2001;49:1-13.
    3. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47:476-5. CrossRef
    4. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37:275-1. CrossRef
    5. Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T, et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet. 2004;36:855-0. CrossRef
    6. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355:788-8. CrossRef
    7. Pyeritz RE. Heritable thoracic aortic disorders. Curr Opin Cardiol. 2014;29:97-02. CrossRef
    8. Boileau C, Guo DC, Hanna N, Regalado ES, Detaint D, Gong L, et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet. 2012;44:916-1. CrossRef
    9. Renard M, Callewaert B, Malfait F, Campens L, Sharif S, Del Campo M, et al. Thoracic aortic-aneurysm and dissection in association with significant mitral valve disease caused by mutations in TGFB2. Int J Cardiol. 2012;65:584-.
    10. Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Gallo E, Fert-Bober J, et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet. 2012;44:922-. CrossRef
    11. van der Linde D, Verhagen HJ, Moelker A, van de Laar IM, Van Herzeele I, De Backer J, et al. Aneurysm-osteoarthritis syndrome with visceral and iliac artery aneurysms. J Vasc Surg. 2013;57:96-02. CrossRef
    12. van de Laar IM, van der Linde D, Oei EH, Bos PK, Bessems JH, Bierma-Zeinstra SM, et al. Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J Med Genet. 2012;49:47-7. CrossRef
    13. van de Laar IM, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JM, et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011;43:121-. CrossRef
    14. van der Linde D, van de Laar IM, Bertoli-Avella AM, Oldenburg RA, Bekkers JA, Mattace-Raso FU, et al. Aggressive cardiovascular phenotype of aneurysms-osteoarthritis syndrome caused by pathogenic SMAD3 variants. J Am Coll Cardiol. 2012;60:397-03. CrossRef
    15. Mortani Barbosa EJJ, Pyeritz RE, Litt H, Desjardins B. Vascular Ehlers-Danlos syndrome presenting as rapidly progressive multiple arterial aneurysms and dissections. Am J Med Genet. 2011;155A:3090-. CrossRef
    16. Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342:673-0. CrossRef
    17. Beighton P, De PA,
  • 刊物主题:Medicine/Public Health, general; Pharmacology/Toxicology; Medicinal Chemistry;
  • 出版者:BioMed Central
  • ISSN:1750-1172
文摘
Background Heritable Thoracic Aortic Disorders (H-TAD) may present clinically as part of a syndromic entity or as an isolated (nonsyndromic) manifestation. About one dozen genes are now available for clinical molecular testing. Targeted single gene testing is hampered by significant clinical overlap between syndromic H-TAD entities and the absence of discriminating features in isolated cases. Therefore panel testing of multiple genes has now emerged as the preferred approach. So far, no data on mutation detection rate with this technique have been reported. Methods We performed Next Generation Sequencing (NGS) based screening of the seven currently most prevalent H-TAD-associated genes (FBN1, TGFBR1/2, TGFB2, SMAD3, ACTA2 and COL3A1) on 264 samples from unrelated probands referred for H-TAD and related entities. Patients fulfilling the criteria for Marfan syndrome (MFS) were only included if targeted FBN1 sequencing and MLPA analysis were negative. Results A mutation was identified in 34 patients (13%): 12 FBN1, one TGFBR1, two TGFBR2, three TGFB2, nine SMAD3, four ACTA2 and three COL3A1 mutations. We found mutations in FBN1 (N--), TGFBR2 (N--) and COL3A1 (N--) in patients without characteristic clinical features of syndromal H-TAD. Six TAD patients harboring a mutation in SMAD3 and one TAD patient with a TGFB2 mutation fulfilled the diagnostic criteria for MFS. Conclusion NGS based H-TAD panel testing efficiently reveals a mutation in 13% of patients. Our observations emphasize the clinical overlap between patients harboring mutations in syndromic and nonsyndromic H-TAD related genes as well as within syndromic H-TAD entities, justifying a widespread application of this technique.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700