用户名: 密码: 验证码:
Fire Behaviour of Less-Combustible Dielectric Liquids in a Nuclear Facility
详细信息    查看全文
  • 作者:Denis H. Hellebuyck ; Patrick van Hees ; Tommy Magnusson ; Fredrik Jörud…
  • 关键词:Dielectric coolants ; Electrical fires ; Less ; combustible liquids ; Fire hazard ; Fire risk ; Nuclear facilities ; Pool fires
  • 刊名:Fire Technology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:52
  • 期:2
  • 页码:289-308
  • 全文大小:1,462 KB
  • 参考文献:1.Markets and Markets (2013) Transformer oil market. Global Industry Trends & Forecast to 2017, pp. 1–21
    2.Boverket (2011) BFS 2011:27 Boverkets allmänna råd om analytisk dimensionering av byggnders brandskydd. Boverket
    3.Eberhardt R, Wieser B, Lick W, Muhr HM, Pukel G, Schwarz G, Baumannm F (2011) Dissolved gas analysis investigations on ester liquids after breakdown. In: IEEE International Conference on Dielectric Liquids (ICDL), pp. 1–4. doi:10.​1109/​ICDL.​2011.​6015447
    4.Liu Y, Li J, Zhang Z (2012) Gases dissolved in natural ester fluids under thermal faults in transformers. In: IEEE International Symposium on Electrical Insulation (ISEI), pp. 223–226. doi:10.​1109/​ELINSL.​2012.​6251462
    5.Jakob F (2003) Dissolved gas analysis—past, present and future, Weidmann Electrical Technology, Technical Library. http://​www.​weidmann-solutions.​cn/​zhenduan/​dga_​past_​future.​pdf
    6.Ngoc MN, Lesaint O, Bonifaci N, Denat A, Hassanzadeh M (2010) A comparison of breakdown properties of natural and synthetic esters at high voltage. In: Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 1–4. doi:10.​1109/​CEIDP.​2010.​5724062
    7.International Organisation for Standardisation (2012) Determination of Flash and Fire Points—Cleveland Open Cup Method (ISO 2592:2000). International Organisation for Standardisation, Geneva
    8.Drysdale D (2011) An introduction to fire dynamics, 3rd edn. ISBN: 978-1-119-97610-3
    9.Miller FJ, Ross HD (1992). Further observations of flame spread over laboratory-scale alcohol pools. In: 24th Symposium (International) on Combustion, pp. 1703–1711. The Combustion Institute, Pittsburgh.
    10.Yamagishi A, Power AE (2008) Fundamental study on development of transformer with low-viscosity silicone liquid. EEJ 165(2):265–271. doi:10.​1002/​eej.​20483
    11.Yamagishi A and Sugawa O (2006) Evaluation of less-flammable insulation fluids and fire-prevention guidance for transformers. IEEJ Trans Power Energy, 126(12):1187–1190 doi:10.​1541/​ieejpes.​126.​1187 CrossRef
    12.Suzuki K, Sugawa O, Yamagishi A, Miyagi K, Kamiya K (2007) Experimental study on ignition and combustion behaviors of insulation fluids for transformer using cone calorimeter experimental study on ignition and combustion behaviors of insulation fluids for transformer using cone calorimeter. IEEJ Trans Power Energy 127(7):797–802 doi:10.​1541/​ieejpes.​127.​797 CrossRef
    13.Simonson M (1996) Hydraulic fluids: fire characteristics and classification. SP Brandforsk Project, pp. 742–961
    14.Carvel R, Steinhaus T, Rein G, Torero JL (2011) Determination of the flammability properties of polymeric materials : a novel method. Polym Degrad Stab 96(3): 314–319 doi:10.​1016/​j.​polymdegradstab.​2010.​08.​010 CrossRef
    15.Bal N, Raynard J, Rein, Torero JL, Försth M, Boulet P, Parent G, Acem Z, Linteris G (2013) Experimental study of radiative heat transfer in a translucent fuel sample exposed to different spectral sources. Heat Mass Transfer 61:742–748 doi: 10.​1016/​j.​ijheatmasstransf​er.​2013.​02.​017 CrossRef
    16.International Electrotechnical Commission (2013) Classification of insulating liquids (IEC 61039). International Electrotechnical Commission, Geneva
    17.FM Global (2009) Approval standard for flammability classification of industrial fluids. FM Approvals
    18.Kaplan S, Garrick JB (1981) On the quantitative definition of risk. Risk Anal 1:11–27. doi: 10.​1111/​j.​1539-6924.​1981.​tb01350.​x CrossRef
    19.Berg HP, Fritze N (2011) Reliability of Main Transformers. RT&A 20(2):52–69. http://​gnedenko-forum.​org/​Journal/​2011/​012011/​RTA_​1_​2011-07.​pdf
    20.Frimpong G, Page S, Carrander K, Cherry D (2014) Transformers transformed. http://​tdworld.​com/​sponsored-articles/​transformers-transformed Accessed 28 July 2014
    21.Ng A K-L, Spearpoint M (2007) Risk assessment of transformer fire protection in a typical New Zealand high-rise building. http://​hdl.​handle.​net/​10092/​1223
    22.Duarte BD, Pires BTA, Pena BM, Bastos G (2012) The Impact of Transformer Fire in the Context of Brazilian Substations, Ingeniería Eléctrica Forense pp. 1–25. http://​www.​scribd.​com/​doc/​87567980/​The-Power-of-a-Transformer-Fire
    23.WorkingGroupA2.35 (2010) Experiences in service with new insulating liquids. Cigré. http://​static.​mimaterials.​com/​midel/​documents/​sales/​New_​Experiences_​in_​Service_​with_​New_​Insulating_​Liquids.​pdf
    24.International Electrotechnical Commission (2012) Fire Hazard Testing Part1-40: Guidance for Assessing the Fire Hazard of Electrotechnical Products—Insulating Liquids (IEC 60695-1-40 ed1.0) (DRAFT)
    25.Borsi H, Gockenbach E (2005) Properties of ester liquid Midel 7131 as an alternative liquid to mineral oil for transformers. In: IEEE International Conference on Dielectric Liquids, 2005 (ICDL 2005), pp. 371–374. doi:10.​1109/​ICDL.​2005.​1490104
    26.Bluestar Silicones (2012) Rhodorsil ® huile 604 v 50. pp. 1–17. http://​www.​silitech.​ch/​upload/​fiche_​technique_​f/​198.​pdf
    27.Cooper Power Systems (2004) Dielectric Fluids Envirotemp FR3 Fluid. http://​www.​cargill.​com/​wcm/​groups/​public/​@ccom/​documents/​document/​na31656082.​pdf
    28.International Electrotechnical Commission (2013) Heat release of insulating liquids used in electrotechnical products (IEC 60695-8-3) International Electrotechnical Commission, Geneva
    29.Janssens ML (1991) Measuring rate of heat release by oxygen consumption. Fire Technol 27(3):234–249 doi:10.​1007/​BF01038449 CrossRef
    30.Sivathanu Y, Hamins A, Mulholland G, Kashiwagi T, Buch R (2001) Characterization of particulate from fires burning silicone fluids. J Heat Transfer 123(6)1093–1097 http://​fire.​nist.​gov/​bfrlpubs/​fire01/​art090.​html
    31.Buch J, Hamins R, Shields J (1997) radiative emission fraction of pool fires burning silicone fluids. Combust Flame 108(1):118–126. doi:10.​1016/​S0010-2180(96)00098-3 CrossRef
    32.Buch R, Shields J (1998) The influence of surface silica on the pyrolysis of silicones. NISTIR 6242 http://​fire.​nist.​gov/​bfrlpubs/​fire98/​art088.​html
  • 作者单位:Denis H. Hellebuyck (1) (2)
    Patrick van Hees (1)
    Tommy Magnusson (3)
    Fredrik Jörud (4)
    Daniel Rosberg (5)
    Marc L. Janssens (6)

    1. Lund University, Lund, Sweden
    2. Bombardier Transportation, Västerås, Sweden
    3. Ringhals AB, Väröbacka, Sweden
    4. ESS European Spallation Source, Lund, Sweden
    5. WSP Fire & Risk, Malmö, Sweden
    6. Southwest Research Institute, San Antonio, TX, USA
  • 刊物类别:Engineering
  • 刊物主题:Civil Engineering
    Mechanics
    Characterization and Evaluation Materials
    Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-8099
文摘
Transformers, modulators and other high voltage electrical equipment are traditionally filled with mineral oil, which serves as a coolant and dielectric insulator. A rising trend is observed globally towards the adoption of less-combustible, bio-degradable transformer liquids at ever increasing voltages and power ratings. This paper presents a study of the fire behavior of five different dielectric transformer coolants: mineral oil, silicone liquid, synthetic ester, and two natural esters. Two types of tests were performed: comparative small-scale tests with two types of pans in the Cone Calorimeter (ISO 5660-1), and intermediate-scale pool fire experiments under the hood of an oxygen consumption calorimeter. The data obtained in this study are used in a fire engineering analysis of the evacuation and smoke removal from the 5900 m2 gallery in the planned European Spallation Source in Lund, Sweden. The comparative results indicate a wide range of fire properties for the tested liquids. The heat release rates calculated from the Cone Calorimeter experiments are reasonably consistent with tabulated values, except for the silicone liquid. The latter forms a crust on the liquid surface which significantly impedes combustion. Heat losses from the burning surface to cooler liquid below and pan boundaries have a significant effect on the burning behavior. These scale-dependent phenomena imply that great care should be taken in using small-scale burning data in a fire engineering analysis. Additional work is needed to gain a better understanding of the relation between small-scale tests and large-scale tests, and between the behavior of these liquids in pool fire experiments and that in real fires.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700