用户名: 密码: 验证码:
Dopant in Near-Surface Semiconductor Layers of Metal–Insulator–Semiconductor Structures Based on Graded-Gap p-Hg0.78Cd0.22Te Grown by Molecular-Beam Epitaxy
详细信息    查看全文
  • 作者:A. V. Voitsekhovskii ; S. N. Nesmelov ; S. M. Dzyadukh
  • 关键词:MIS structure ; HgCdTe ; molecular beam epitaxy ; graded ; gap layer ; capacitance–voltage characteristic ; dopant concentration
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:45
  • 期:2
  • 页码:881-891
  • 全文大小:1,386 KB
  • 参考文献:1.A. Rogalski, Infrared Detectors, 2nd ed. (New York: CRC Press, 2011).
    2.C. Fulk, W. Radford, D. Buell, J. Bangs, and K. Rybnicek, J. Electron. Mater. 44, 2977 (2015).CrossRef
    3.R. Singh, A.K. Gupta, and K.C. Chhabra, Def. Sci. J. 41, 205 (2013).CrossRef
    4.G.H. Tsau, A. Sher, M. Madou, J.A. Wilson, V.A. Cotton, and C.E. Jones, J. Appl. Phys. 59, 1238 (1986).CrossRef
    5.Y. Nemirovsky and I. Bloom, J. Vac. Sci. Technol. A6, 2710 (1988).CrossRef
    6.A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, Russ. Phys. J. 52, 1003 (2009).CrossRef
    7.S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S. Ganichev, J. Electron. Mater. 39, 918 (2010).CrossRef
    8.A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, Thin Solid Films 522C, 261 (2012).CrossRef
    9.A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, Thin Solid Films 551, 92 (2014).CrossRef
    10.A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.V. Vasil’ev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, and M.V. Yakushev, Infrared Phys. Technol. 71, 236 (2015).CrossRef
    11.A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.V. Vasil’ev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, V.D. Kuz’min, and V.G. Remesnik, Russ. Phys. J. 57, 707 (2014).CrossRef
    12.A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, Russ. Phys. J. 57, 1070 (2014).CrossRef
    13.E.H. Nicollian and J.R. Brews, MOS Physics and Technology (New York: Wiley, 1982).
    14.W. Van Gelder and E.H. Nicollian, J. Electrochem. Soc. 118, 138 (1971).CrossRef
    15.J.R. Brews, J. Appl. Phys. 44, 3228 (1973).CrossRef
    16.S.M. Sze, Physics of Semiconductor Devices, 3rd ed. (NewYork: Wiley, 2007).
    17.K.D. Mynbaev and V.I. Ivanov-Omskii, Semiconductors 40, 1 (2006).CrossRef
    18.I.I. Izhnin, S.A. Dvoretsky, K.D. Mynbaev, O.I. Fitsych, N.N. Mikhailov, V.S. Varavin, M. Pociask-Bialy, A.V. Voitsekhovskii, and E. Sheregii, J. Appl. Phys. 115, 163501 (2014).CrossRef
    19.M. Reddy, W.A. Radford, D.D. Lofgreen, K.R. Olsson, J.M. Peterson, and S.M. Johnson, J. Electron. Mater. 43, 2991 (2014).CrossRef
    20.C. Lobre, P.H. Jouneau, L. Mollard, and P. Ballet, J. Electron. Mater. 43, 2908 (2014).CrossRef
    21.T. Aoki, Y. Chang, G. Badano, J. Zhao, C. Grein, S. Sivananthan, and D.J. Smith, J. Cryst. Growth 265, 224 (2004).CrossRef
    22.P. Capper, C.D. Maxey, C.L. Jones, J.E. Gower, E.S. O’Keefe, and D. Shaw, J. Electron. Mater. 28, 637 (1999).CrossRef
    23.M.V. Yakushev, D.V. Brunev, V.S. Varavin, A.V. Vishnyakov, S.A. Dvoretskij, A.V. Predein, and I.V. Sabinina, Infrared Phys. Technol. 69, 107 (2015).CrossRef
    24.V.V. Vasilyev, A.V. Voitsekhovsky, F.N. Dultsev, T.A. Zemtsova, I.O. Parm, and A.P. Solovyev, Appl. Phys. 5, 63 (2007).
    25.R.S. Nakhmanson, Solid-State Electron. 19, 745 (1976).CrossRef
    26.M.M. Bülbül, Microelectron. Eng. 84, 124 (2007).CrossRef
    27.A. Berman and D.R. Kerr, Solid-State Electron. 17, 735 (1974).CrossRef
    28.M.A. Kinch, Metal–insulator–semiconductor infrared detectors.Semiconductors and Semimetals, Vol. 18, ed. R.K. Willardson and A.C. Beer (New York: Academic Press, 1981), p. 313.
    29.A.R. LeBlanc, D.D. Kleppinger, and J.P. Walsh, J. Electrochem. Soc. 119, 1068 (1972).CrossRef
    30.S.T. Lin and J. Reuter, Solid-State Electron. 26, 343 (1983).CrossRef
    31.A.V. Voitsekhovskii, D.V. Grigor’ev, and N.K. Talipov, Russ. Phys. J. 51, 1001 (2008).CrossRef
    32.A.V. Voitsekhovskii and A.P. Kokhanenko, Russ. Phys. J. 41, 76 (1998).CrossRef
  • 作者单位:A. V. Voitsekhovskii (1) (2)
    S. N. Nesmelov (1) (2)
    S. M. Dzyadukh (1) (2)

    1. National Research Tomsk State University, 36 Lenina Ave., 634050, Tomsk, Russia
    2. Siberian Physical-Technical Institute TSU, 1 Novosobornaya Sq., 634050, Tomsk, Russia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
Peculiarities in determining the dopant concentration and dopant distribution profile in the near-surface layer of a semiconductor are investigated by measuring the admittance of metal–insulator–semiconductor structures (MIS structures) based on p-Hg0.78Cd0.22Te grown by molecular beam epitaxy. The dopant concentrations in the near-surface layer of the semiconductor are determined by measuring the admittance of MIS structures in the frequency range of 50 kHz to 1 MHz. It is shown that in this frequency range, the capacitance–voltage characteristics of MIS structures based on p-Hg0.78Cd0.22Te with a near-surface graded gap layer demonstrate a high-frequency behavior with respect to the recharge time of surface states located near the Fermi level for an intrinsic semiconductor. The formation time of the inversion layer is decreased by less than two times, if a near-surface graded-gap layer is created. The dopant distribution profile in the near-surface layer of the semiconductor is found, and it is shown that for structures based on p-Hg0.78Cd0.22Te with a near-surface graded-gap layer, the dopant concentration has a minimum near the interface with the insulator. For MIS structure based on n-Hg0.78Cd0.22Te, the dopant concentration is more uniformly distributed in the near-surface layer of the semiconductor. Keywords MIS structure HgCdTe molecular beam epitaxy graded-gap layer capacitance–voltage characteristic dopant concentration

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700