用户名: 密码: 验证码:
The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation
详细信息    查看全文
  • 作者:Thomas Portnoy (1) (2) (7) (8)
    Antoine Margeot (1)
    Rita Linke (3)
    Lea Atanasova (4)
    Erzsébet Fekete (5)
    Erzsébet Sándor (6)
    Lukas Hartl (4)
    Levente Karaffa (5)
    Irina S Druzhinina (4)
    Bernhard Seiboth (4)
    Stéphane Le Crom (2) (7) (8)
    Christian P Kubicek (4)
  • 刊名:BMC Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:1392KB
  • 参考文献:1. G?rke B, Stülke J: Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. / Nat Rev Microbiol 2008, 6:613-24. CrossRef
    2. Deutscher J: The mechanisms of carbon catabolite repression in bacteria. / Curr Opin Microbiol 2008, 11:87-3. CrossRef
    3. Gancedo JM: Carbon catabolite repression in yeast. / Microbiol Mol Biol Rev 1998, 62:334-61.
    4. Ronne H: Glucose repression in fungixs. / Trends Genet 1995, 11:12-7. CrossRef
    5. Westholm JO, Nordberg N, Murén E, Ameur A, Komorowski J, Ronne H: Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. / BMC Genomics 2008, 9:601. 471-2164-9-601">CrossRef
    6. Dowzer CEA, Kelly JM: Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans . / Mol Cell Biol 1991, 11:5701-709.
    7. Ruijter GJ, Visser J: Carbon repression in Aspergilli . / FEMS Microbiol Letts 1997, 151:103-14. 4-6968.1997.tb12557.x">CrossRef
    8. Felenbok B, Flipphi M, Nikolaev I: Ethanol catabolism in Aspergillus nidulans : a model system for studying gene regulation. / Progress Nucleic Acid Res Mol Biol 2001, 69:149-04. 47-0">CrossRef
    9. Panozzo C, Cornillot E, Felenbok B: The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. / J Biol Chem 1998, 273:6367-372. 4/jbc.273.11.6367">CrossRef
    10. Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP: Carbon catabolite repression of xyn1 (xylanase I-encoding) gene expression in Trichoderma reesei . / Mol Microbiol 1996, 21:1273-281. 46/j.1365-2958.1996.00094.x">CrossRef
    11. Cubero B, Scazzocchio C: Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans . / EMBO J 1994, 13:407-15.
    12. Takashima S, Iikura H, Nakamura A, Masaki H, Uozumi T: Analysis of Cre1 binding sites in the Trichoderma reesei cbh1 upstream region. / FEMS Microbiol Letts 1996, 145:361-66. 4-6968.1996.tb08601.x">CrossRef
    13. Cziferszky A, Mach RL, Kubicek CP: Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Cre1 of Hypocrea jecorina ( Trichoderma reesei ). / J Biol Chem 2002, 277:14688-4699. 4/jbc.M200744200">CrossRef
    14. Bailey C, Arst HN Jr: Carbon catabolite repression in Aspergillus nidulans . / Eur J Biochem 1975, 51:573-77. 432-1033.1975.tb03958.x">CrossRef
    15. Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP: The function of CreA, the carbon catabolite repressor of Aspergillus nidulans , is regulated at the transcriptional and post-transcriptional level. / Mol Microbiol 1999, 32:169-78. 46/j.1365-2958.1999.01341.x">CrossRef
    16. Ilyés H, Fekete E, Karaffa L, Fekete E, Sándor E, Szentirmai A, Kubicek CP: CreA-mediated carbon catabolite repression of β-galactosidase formation in Aspergillus nidulans is growth rate dependent. / FEMS Microbiol Letts 2004, 235:147-51. 4.04.020">CrossRef
    17. Shroff RA, O'Connor SM, Hynes MJ, Lockington RA, Kelly JM: Null alleles of creA , the regulator of carbon catabolite repression in Aspergillus nidulans . / Fungal Genet Biol 1997, 22:28-8. CrossRef
    18. Nakari-Set?l? T, Paloheimo M, Kallio J, Vehmaanper? J, Penttil? M, Saloheimo M: Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. / Appl Environ Microbiol 2009, 75:4853-860. CrossRef
    19. Mach RL, Schindler M, Kubicek CP: Transformation of Trichoderma reesei based on hygromycin resistance using homologous expression signals. / Curr Genet 1994, 25:567-70. CrossRef
    20. Smyth GK: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. / Statistical Applications in Genetics and Molecular Biology 2004, 3.
    21. Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M: Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae , is a stress-inducible regulator of plasma membrane H(+)-ATPase. / Cell Stress Chaperones 1997, 2:12-4. 466-1268(1997)002<0012:HTIPMH>2.3.CO;2">CrossRef
    22. Kubicek CP, Mikus M, Schuster , Schmoll M, Seiboth B: Metabolic engineering strategies for improvement of cellulase production by Hypocrea jecorina . / Biotechnol Biofuels 2009, 2:19. 4-6834-2-19">CrossRef
    23. Boase NA, Kelly JM: A role for creD, a carbon catabolite repression gene from Aspergillus nidulans , in ubiquitination. / Mol Microbiol 2004, 53:929-40. 4.04172.x">CrossRef
    24. Thomas-Chollier M, Sand O, Turatsinze JV, Janky R, Defrance M, Vervisch E, Brohée S, van Helden J: RSAT: regulatory sequence analysis tools. / Nucleic Acids Res 2008, 1:W119-W127. 4">CrossRef
    25. Mogensen J, Nielsen HB, Hofmann G, Nielsen J: Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol. / Fungal Genet Biol 2006, 43:593-03. CrossRef
    26. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS: Genome sequence analysis of the cellulolytic fungus Trichoderma reesei (syn Hypocrea jecorina ) reveals a surprisingly limited inventory of carbohydrate active enzymes. / Nature Biotechnol 2008, 26:553-60. 403">CrossRef
    27. Taatjes DJ, Tjian R: Structure and function of CRSP/Med2; a promoter-selective transcriptional coactivator complex. / Mol Cell 2004, 14:675-83. 4.05.014">CrossRef
    28. Balciunas D, Hallberg M, Bj?rklund S, Ronne H: Functional interactions within yeast mediator and evidence of differential subunit modifications. / J Biol Chem 2003, 278:3831-839. 4/jbc.M206946200">CrossRef
    29. MacCabe AP, Miró P, Ventura L, Ramón D: Glucose uptake in germinating Aspergillus nidulans conidia: involvement of the creA and sorA genes. / Microbiology 2003, 149:2129-136. 49-0">CrossRef
    30. Peter GJ, Düring L, Ahmed A: Carbon catabolite repression regulates amino acid permeases in Saccharomyces cerevisiae via the TOR signaling pathway. / J Biol Chem 2006, 281:5546-552. 4/jbc.M513842200">CrossRef
    31. Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B: D-galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. / Microbiology 2006, 152:1507-514. CrossRef
    32. Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP: Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. / Mol Genet Genomics 2003, 270:46-5. 438-003-0895-2">CrossRef
    33. García I, Gonzalez R, Gómez D, Scazzocchio C: Chromatin rearrangements in the prnD-prnB bidirectional promoter: dependence on transcription factors. / Eukaryot Cell 2004, 3:144-6. 44-156.2004">CrossRef
    34. Reyes-Dominguez Y, Narendja F, Berger H, Gallmetzer A, Fernandez-Martin R, Garcia I, Scazzocchio C, Strauss J: Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. / Eukaryot Cell 2008, 7:656-3. 4-07">CrossRef
    35. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA: Dissecting the regulatory circuitry of a eukaryotic genome. / Cell 1998, 95:717-28. 4(00)81641-4">CrossRef
    36. Becker PB, Horz W: ATP-dependent nucleosome remodeling. / Annu Rev Biochem 2002, 71:247-73. 46/annurev.biochem.71.110601.135400">CrossRef
    37. Sudarsanam P, Iyer VR, Brown PO, Winston F: Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae . / Proc Natl Acad Sci USA 2000, 97:3364-369. 407197">CrossRef
    38. Dechassa ML, Zhang B, Horowitz-Scherer R, Persinger J, Woodcock CL, Peterson CL, Bartholomew B: Architecture of the SWI/SNF-nucleosome complex. / Mol Cell Biol 2008, 28:6010-021. CrossRef
    39. Kanauchi A, Yamashiro CT, Tanabe S, Murayama T: A ras homologue of Neurospora crassa regulates morphology. / Mol Gen Genet 1997, 254:427-32. 4380050435">CrossRef
    40. Fortwendel JR, Fuller KK, Stephens TJ, Bacon WC, Askew DS, Rhodes JC: Aspergillus fumigatus RasA regulates asexual development and cell wall integrity. / Eukaryot Cell 2008, 7:1530-539. CrossRef
    41. Breviario D, Hinnebusch AG, Dhar R: Multiple regulatory mechanisms control the expression of the RAS1 and RAS2 genes of Saccharomyces cerevisiae . / EMBO J 1988, 7:1805-813.
    42. Du LL, Novick P: Pag1p, a novel protein associated with protein kinase Cbk1p, is required for cell morphogenesis and proliferation in Saccharomyces cerevisiae . / Mol Biol Cell 2002, 13:503-14. CrossRef
    43. Ohara T, Inoue I, Namiki F, Kunoh H, Tsuge T: REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum . / Genetics 2004, 166:113-4. 4/genetics.166.1.113">CrossRef
    44. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C: Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. / Fungal Genet Biol 2004, 41:973-1. 4.08.001">CrossRef
    45. Hartl L, Kubicek CP, Seiboth B: Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina . / J Biol Chem 2008, 282:18654-8659. 4/jbc.M700955200">CrossRef
    46. Gruber F, Visser J, Kubicek CP, De Graaff L: Cloning of the Trichoderma reesei pyrG gene and its use as a homologous marker for a high-frequency transformation system. / Curr Genet 1990, 18:451-56.
    47. Kelly JM, Hynes MJ: Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans . / EMBO J 1985, 4:475-79.
    48. Jourdren L, Duclos A, Brion C, Portnoy T, Mathis H, Margeot A, Le Crom S: Teolenn: an efficient and customizable workflow to design high-quality probes for microarray experiments. / Nucleic Acids Res 2010, 38:e117. CrossRef
    49. Lemoine S, Combes F, Servant N, Le Crom S: Goulphar: Rapid access and expertise for standard two-color microarray normalization methods. / BMC Bioinformatics 2006, 7:467. 471-2105-7-467">CrossRef
    50. Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST ? ) for group-wise comparison and statistical alaysis of relative expression results in real-time PCR. / Nucleic Acid Research 2002, 30:e36. CrossRef
    51. Druzhinina IS, Schmoll M, Seiboth B, Kubicek CP: Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina . / Appl Environ Microbiol 2006, 72:2126-133. CrossRef
    52. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J: TM4: a free, open-source system for microarray data management and analysis. / Biotechniques 2003, 34:374-78.
    53. Pavlidis P, Noble WS: Analysis of strain and regional variation in gene expression in mouse brain. / Genome Biol 2001, 2:RESEARCH0042. 42">CrossRef
    54. Ben-Dor A, Shamir R, Yakhini Z: Clustering gene expression patterns. / J Comput Biol 1999, 6:281-7. 4">CrossRef
    55. Walter MC, Rattei T, Arnold R, Güldener U, Münsterk?tter M, Nenova K, Kastenmüller G, Tischler P, W?lling A, Volz A, Pongratz N, Jost R, Mewes HW, Frishman D: PEDANT covers all complete RefSeq genomes. / Nucleic Acids Res 2009, (37 Database):D408-11.
    56. Institute of Bioinformatic and Systems Biology: Helmholtz Zentrum München. [http://pedant.helmholtz-muenchen.de/]
  • 作者单位:Thomas Portnoy (1) (2) (7) (8)
    Antoine Margeot (1)
    Rita Linke (3)
    Lea Atanasova (4)
    Erzsébet Fekete (5)
    Erzsébet Sándor (6)
    Lukas Hartl (4)
    Levente Karaffa (5)
    Irina S Druzhinina (4)
    Bernhard Seiboth (4)
    Stéphane Le Crom (2) (7) (8)
    Christian P Kubicek (4)

    1. Département Biotechnologie, IFP Energies nouvelles, 1-4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France
    2. école normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, F-75005, France
    7. Inserm, U1024, Paris, F-75005, France
    8. CNRS, UMR 8197, Paris, F-75005, France
    3. Austrian Center of Industrial Biotechnology, c/o Institute of Chemical Engineering, Technische Universit?t Wien, Getreidemarkt 9/166, A-1060, Vienna, Austria
    4. Research Area Gene Technology and Applied Biochemistry, Institute of ChemicalEngineering, Technische Universit?t Wien, Getreidemarkt 9/166, A-1060, Vienna, Austria
    5. Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4010, P.O.Box 56, Debrecen, Hungary
    6. Department of Plant Protection, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, H-4032, B?sz?rményi út 138, Debrecen, Hungary
文摘
Background The identification and characterization of the transcriptional regulatory networks governing the physiology and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR): it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. In lower multicellular fungi, the C2H2 zinc finger CreA/CRE1 protein has been shown to act as the transcriptional repressor in this process. However, the complete list of its gene targets is not known. Results Here, we deciphered the CRE1 regulatory range in the model cellulose and hemicellulose-degrading fungus Trichoderma reesei (anamorph of Hypocrea jecorina) by profiling transcription in a wild-type and a delta-cre1 mutant strain on glucose at constant growth rates known to repress and de-repress CCR-affected genes. Analysis of genome-wide microarrays reveals 2.8% of transcripts whose expression was regulated in at least one of the four experimental conditions: 47.3% of which were repressed by CRE1, whereas 29.0% were actually induced by CRE1, and 17.2% only affected by the growth rate but CRE1 independent. Among CRE1 repressed transcripts, genes encoding unknown proteins and transport proteins were overrepresented. In addition, we found CRE1-repression of nitrogenous substances uptake, components of chromatin remodeling and the transcriptional mediator complex, as well as developmental processes. Conclusions Our study provides the first global insight into the molecular physiological response of a multicellular fungus to carbon catabolite regulation and identifies several not yet known targets in a growth-controlled environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700