用户名: 密码: 验证码:
Simultaneous in situ formation of Ni-based catalysts at the anode for glycerol oxidation and at the cathode for hydrogen evolution
详细信息    查看全文
  • 作者:Xiaocai Liang ; Mingshu Xiao ; Minglu Xu ; Dazhang Yang…
  • 关键词:Ni ; based catalysts ; Glycerol oxidation ; Hydrogen evolution
  • 刊名:Journal of Applied Electrochemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:46
  • 期:1
  • 页码:1-8
  • 全文大小:1,978 KB
  • 参考文献:1.Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–761. doi:10.​1002/​cctc.​201000126 CrossRef
    2.Symes MD, Cronin L (2013) Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat Chem 5:403–409. doi:10.​1038/​nchem.​1621 CrossRef
    3.Birry L, Lasia A (2004) Studies of the hydrogen evolution reaction on Raney nickel—molybdenum electrodes. J Appl Electrochem 34:735–749. doi:10.​1023/​B:​JACH.​0000031161.​26544.​6a CrossRef
    4.Marinović V, Stevanović J, Jugović B, Maksimović M (2006) Hydrogen evolution on Ni/WC composite coatings. J Appl Electrochem 36:1005–1009. doi:10.​1007/​s10800-006-9168-1 CrossRef
    5.Le C (2011) A review of non-fossil energy based hydrogen production technologies. Energy Res Inform 27:130–137
    6.Zhong C, Hu WB, Cheng YF (2013) Recent advances in electrocatalysts for electro-oxidation of ammonia. J Mater Chem A 1:3216–3238. doi:10.​1039/​C2TA00607C CrossRef
    7.Ding R, Qi L, Jia M, Wang H (2014) Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 6:1369–1376. doi:10.​1039/​C3NR05359H CrossRef
    8.Li S-L, Xu Q (2013) Metal-organic frameworks as platforms for clean energy. Energy Environ Sci 6:1656–1683. doi:10.​1039/​C3EE40507A CrossRef
    9.Luo J, Njoki PN, Lin Y, Mott D, Wang Zhong C-J (2006) Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 22:2892–2898. doi:10.​1021/​la0529557 CrossRef
    10.Yang M, Cai Q, Liu C, Wu R, Sun D, Chen Y, Tang Y, Lu T (2014) Monodispersed hollow platinum nanospheres: facile synthesis and their enhanced electrocatalysis for methanol oxidation. J Mater Chem A 2:13738–13743. doi:10.​1039/​C4TA01434K CrossRef
    11.Liao H, Qiu Z, Wan Q, Wang Z, Liu Y, Yang N (2014) Universal electrode interface for electrocatalytic oxidation of liquid fuels. ACS Appl Mater Interfaces 6:18055–18062. doi:10.​1021/​am504926r CrossRef
    12.Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549. doi:10.​1039/​B707343G CrossRef
    13.Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ Sci 5:6012–6021. doi:10.​1039/​C2EE03250C CrossRef
    14.Doyle RL, Godwin IJ, Brandon MP, Lyons MEG (2013) Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. PCCP 15:13737–13783. doi:10.​1039/​C3CP51213D CrossRef
    15.Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38:109–114. doi:10.​1039/​B802885K CrossRef
    16.Dey S, Mondal B, Dey A (2014) An acetate bound cobalt oxide catalyst for water oxidation: role of monovalent anions and cations in lowering overpotential. PCCP 16:12221–12227. doi:10.​1039/​C4CP01205D CrossRef
    17.Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345. doi:10.​1126/​science.​1185372 CrossRef
    18.Lei H, Han A, Li F, Zhang M, Han Y, Du P, Lai W, Cao R (2014) Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production. PCCP 16:1883–1893. doi:10.​1039/​C3CP54361G CrossRef
    19.Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s − 1 for H2 production. Science 333:863–866CrossRef
    20.Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270CrossRef
    21.Raj IA, Vasu K (1990) Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20:32–38CrossRef
    22.Lupi C, Dell’Era A, Pasquali M (2009) Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int J Hydrog Energy 34:2101–2106CrossRef
    23.Tian J, Liu Q, Cheng N, Asiri AM, Sun X (2014) Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew Chem Int Ed 53:9577–9581. doi:10.​1002/​anie.​201403842 CrossRef
    24.Irshad A, Munichandraiah N (2014) An oxygen evolution Co-Ac catalyst—the synergistic effect of phosphate ions. PCCP 16:5412–5422. doi:10.​1039/​C3CP54860K CrossRef
    25.Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075. doi:10.​1126/​science.​1162018 CrossRef
    26.Oliveira VL, Morais C, Servat K, Napporn TW, Tremiliosi-Filho G, Kokoh KB (2013) Glycerol oxidation on nickel based nanocatalysts in alkaline medium—identification of the reaction products. J Electroanal Chem 703:56–62. doi:10.​1016/​j.​jelechem.​2013.​05.​021 CrossRef
    27.Marshall AT, Haverkamp RG (2008) Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell. Int J Hydrog Energy 33:4649–4654. doi:10.​1016/​j.​ijhydene.​2008.​05.​029 CrossRef
    28.Gómez X, Fernández C, Fierro J, Sánchez ME, Escapa A, Morán A (2011) Hydrogen production: two stage processes for waste degradation. Bioresour Technol 102:8621–8627. doi:10.​1016/​j.​biortech.​2011.​03.​055 CrossRef
    29.Yang Z, Miao Y, Wang T, Liang X, Xiao M, Li W, Yang Y (2014) The self-adsorption of Ni ultrathin layer on glassy carbon surface and their electrocatalysis toward glucose. J Electrochem Soc 161:H375–H378. doi:10.​1149/​2.​049406jes CrossRef
    30.Marken F, Paddon CA, Asogan D (2002) Direct cytochrome c electrochemistry at boron-doped diamond electrodes. Electrochem Commun 4:62–66CrossRef
    31.Fernández L, Carrero H (2005) Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant–clay modified glassy carbon electrodes: oxidation of ascorbic acid and uric acid. Electrochim Acta 50:1233–1240CrossRef
    32.Jeffery DZ, Camara GA (2010) The formation of carbon dioxide during glycerol electrooxidation in alkaline media: first spectroscopic evidences. Electrochem Commun 12:1129–1132. doi:10.​1016/​j.​elecom.​2010.​06.​001 CrossRef
    33.Wang D, Yan W, Vijapur SH, Botte GG (2013) Electrochemically reduced graphene oxide–nickel nanocomposites for urea electrolysis. Electrochim Acta 89:732–736. doi:10.​1016/​j.​electacta.​2012.​11.​046 CrossRef
    34.Wu M-S, Ji R-Y, Zheng Y-R (2014) Nickel hydroxide electrode with a monolayer of nanocup arrays as an effective electrocatalyst for enhanced electrolysis of urea. Electrochim Acta 144:194–199. doi:10.​1016/​j.​electacta.​2014.​08.​098 CrossRef
    35.Miao Y, Ouyang L, Zhou S, Xu L, Yang Z, Xiao M, Ouyang R (2014) Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens Bioelectron 53:428–439. doi:10.​1016/​j.​bios.​2013.​10.​008 CrossRef
    36.Miao Y, Wu J, Zhou S, Yang Z, Ouyang R (2013) Synergistic effect of bimetallic Ag and Ni alloys on each other’s electrocatalysis to glucose oxidation. J Electrochem Soc 160:B47–B53. doi:10.​1149/​2.​059304jes CrossRef
    37.Walczak MM, Popenoe DD, Deinhammer RS, Lamp BD, Chung C, Porter MD (1991) Reductive desorption of alkanethiolate monolayers at gold: a measure of surface coverage. Langmuir 7:2687–2693CrossRef
  • 作者单位:Xiaocai Liang (1)
    Mingshu Xiao (1)
    Minglu Xu (1)
    Dazhang Yang (1)
    Yuhua Yan (1)
    Yanping Tian (1)
    Yuqing Miao (1)

    1. University of Shanghai for Science and Technology, Shanghai, 200093, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Physical Chemistry
    Industrial Chemistry and Chemical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1572-8838
文摘
This study investigated the simultaneous in situ formation of Ni-based catalysts at the anode and cathode for glycerol oxidation and hydrogen evolution, respectively. The formation of electrocatalysts and their immobilization on the electrode surface occur simultaneously, avoiding the tedious and laborious procedures for the preparation and immobilization of the electrocatalysts. Ni salt in the homogeneous solution was deposited to repair the Ni-based electrocatalysts on the electrode surface, accompanied by the electrolysis of glycerol at the anode and the hydrogen evolution reaction at the cathode, exhibiting good working stability. This technique may find potential applications in the conversion of solar energy into storable fuels via the electrolysis of H2O or small molecules to produce hydrogen.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700