用户名: 密码: 验证码:
Electrochemical characterization of platinum-based anode catalysts for membraneless fuel cells
详细信息    查看全文
  • 作者:K. Ponmani ; S.M. Nayeemunisa ; S. Kiruthika ; B. Muthukumaran
  • 关键词:Membraneless fuel cells ; Platinum ; Ruthenium ; Tin ; Sodium perborate
  • 刊名:Ionics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:22
  • 期:3
  • 页码:377-387
  • 全文大小:2,223 KB
  • 参考文献:1.Choban ER, Markoski LJ, Wieckowski A, Kenis PJA (2004) Microfluidic fuel cell based on laminar flow. J Power Sources 128:54–60. doi:10.​1016/​j.​jpowsour.​2003.​11.​052 CrossRef
    2.Narayanan SR and Valdez TI (2003) Handbook of fuel cells—fundamentals, technology and application, edited by W. Vielstich, A. Lamm, and H. A. Gasteiger ∼Wiley, Hoboken, NJ, 2003, Vol. 4, p. 1133.
    3.Kjeang E, Djilali N, Sinton D (2009) Microfluidics fuel cells: a review. J Power Sources 186:353–369. doi:10.​1016/​j.​jpowsour.​2008.​10.​011 CrossRef
    4.Ferrigno R, Stroock AD, Clark TD, Mayer M, Whitesides GM (2002) Membraneless vanadium redox fuel cell using laminar flow. J Am Chem Soc 124:12930–12931. doi:10.​1021/​ja020812q CrossRef
    5.Lamy C, Belgsir EM, Le’ger J-M (2001) Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC). J Appl Electrochem 31:799–801. doi:10.​1023/​A:​1017587310150 CrossRef
    6.Wang F, Zheng Y, Guo Y (2010) The promoting effect of europium on PtSn/c catalyst for ethanol oxidation. Fuel Cells 6:1100–1107. doi:10.​1002/​fuce.​200900158 CrossRef
    7.Zhou WJ, Zhou B, Li WZ, Zhou ZH, Song SQ, Sun GQ (2004) Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. J Power Sources 126:16–22. doi:10.​1016/​j.​jpowsour.​2003.​08.​009 CrossRef
    8.Colmati F, Antolini E, Gonzalez ER (2007) Ethanol oxidation on a carbon-supported Pt75Sn25 electrocatalyst prepared by reduction with formic acid: effect of thermal treatment. Appl Catal B 73:106–115. doi:10.​1016/​j.​apcatb.​2006.​06.​013 CrossRef
    9.Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ (2004) Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources 131:217–223. doi:10.​1016/​j.​jpowsour.​2003.​12.​040 CrossRef
    10.Delbecq F, Vigne F (2005) Acetaldehyde on Pt(111) and Pt/Sn(111): a DFT study of the adsorption structures and of the vibrational spectra. J Phys Chem B 109:10797–10806. doi:10.​1021/​jp045207j CrossRef
    11.Tayal J, Rawat B, Basu S (2012) Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int J Hydrog Energy 37:4597–4605. doi:10.​1016/​j.​ijhydene.​2011.​05.​188 CrossRef
    12.Lee E, Murthy A, Manthiram A (2011) Effect of Mo addition on the electrocatalytic activity of Pt-Sn-Mo/C for direct ethanol fuel cells. Electrochim Acta 56:1611–1618. doi:10.​1016/​j.​electacta.​2010.​10.​086 CrossRef
    13.Ribeiro J, dos Anjos DM, Leger J-M, Hahn F, Olivi P, de Andrade AR, Tremiliso-Filho G, Kokoh KB (2008) Effect on W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38:653–662. doi:10.​1007/​s10800-008-9484-8 CrossRef
    14.Ramos SG, Calafiore A, Bonesi AR, Triaca WE, Castro Luna AM, Moreno MS, Zampieri G, Bengio S (2012) Supported catalysts for alcohol oxidation synthesis and analysis of their catalytic activity. Int J Hydrog Energy 30:995–1001. doi:10.​1016/​j.​ijhydene.​2012.​01.​171
    15.Thepkaew J, Therdthianwong S, Therdthianwong A, Kucernak A, Wongyao N (2013) Promotional roles of Ru and Sn in mesoporous PtRu and PtRuSn catalysts toward ethanol electrooxidation. Int J Hydrog Energy 38:9454–9463. doi:10.​1016/​j.​ijhydene.​2012.​12.​038 CrossRef
    16.Crabb EM, Marshall R, Thompsett D (2000) Carbon monoxide electro-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry. J Electrochem Soc 147:4440–4447. doi:10.​1149/​1.​1394083 CrossRef
    17.Purgato FLS, Olivi P, Le’ger J-M, de Andrade AR, Tremiliosi-Filho G, Gonzalez ER (2009) Activity of platinum-tin catalysts prepared by the Pechini-Adams method for the electrooxidation of ethanol. J Electroanal Chem 628:81–89. doi:10.​1016/​j.​jelechem.​2009.​01.​010 CrossRef
    18.Neto AO, Dias RR, Tusi MM, Linardi M, Spinac’e EV (2007) Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J Power Sources 166:87–91. doi:10.​1016/​j.​jpowsour.​2006.​12.​088 CrossRef
    19.Song SQ, Zhou WJ, Zhou ZH, Jiang LH, Sun GQ, Zin Q, Leontidis V, Kontou S, Tsiakaras P (2005) Direct ethanol PEM fuel cells: the case of platinum based anodes. Int J Hydrog Energy 30:995–1001. doi:10.​1016/​j.​ijhydene.​2004.​11.​006 CrossRef
    20.Spinace EV, Linardi M, Neto AO (2005) Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt–Sn electrocatalysts. Electrochem Commun 7:365–369. doi:10.​1016/​j.​elecom.​2005.​02.​006 CrossRef
    21.Radmilovic V, Gasteiger HA, Ross Jr PN (1995) Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. J Catal 154:98–106. doi:10.​1006/​jcat.​1995.​1151 CrossRef
    22.Beyhan S, Leger J-M, Kadırgan F (2013) Pronounced synergetic effect of the nano-sized PtSnNi/C catalyst for ethanol oxidation in direct ethanol fuel cell. Appl Catal B Environ 130–131:305–313. doi:10.​1016/​j.​apcatb.​2012.​11.​007 CrossRef
    23.Arun A, Gowdhamamoorthi M, Ponmani K, Kiruthika S, Muthukumaran B (2015) Electrochemical characterization of Pt-Ru-Ni/C anode electrocatalyst for methanol electrooxidation in membraneless fuel cells. RSC Adv 5:49643–49650. doi:10.​1039/​c5ra04958j CrossRef
    24.Gowdhamamoorthi M, Arun A, Kiruthika S, Muthukumaran B (2014) Perborate as novel fuel for enhanced performance of membraneless fuel cells. Ionics 20:1723–1728. doi:10.​1007/​s11581-014-1142-z CrossRef
    25.Arun A, Gowdhamamoorthi M, Kiruthika S, Muthukumaran B (2013) Analysis of membraneless methanol fuel cell using percarbonate as an oxidant. J Electrochem Soc 161:F1–F7. doi:10.​1149/​2.​067403jes CrossRef
    26.Ponmani K, Durga S, Gowdhamamoorthi M, Kiruthika S, Muthukumaran B (2014) Influence of fuel and media on membraneless sodium percarbonate fuel cell. Ionics 20:1579–1589. doi:10.​1007/​s11581-014-1118-z CrossRef
    27.Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry. Wiley Interscience, New York, p. 812
    28.Jayashree RS, Yoon SK, Brushett FR, Lopez-Montesinos PO, Natarajan D, Markoski LJ, Kenis PJA (2010) On the performance of membraneless laminar flow-based fuel cells. J Power Sources 195:3569–3578. doi:10.​1016/​j.​jpowsour.​2009.​12.​029 CrossRef
    29.Spinac’e EV, Neto AO, TRR V, Linardi M (2004) Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process. J. Power Sources 137:17–23. doi:10.​1016/​j.​jpowsour.​2004.​05.​030 CrossRef
    30.Zhou WJ, Song SQ, Li WZ, Zhou ZH, Sun GQ, Zin Q, et al. (2005) Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance. J Power Sources 140:50–58. doi:10.​1016/​j.​jpowsour.​2004.​08.​003 CrossRef
    31.Ribeiro J, dos Anjos DM, Kokoh KB, Coutanceau C, L’eger J-M, Olivi P, de Andrade AR, Tremiliosi-Filho G (2007) Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell. Electrochim Acta 52:6997–7006. doi:10.​1016/​j.​electacta.​2007.​05.​017 CrossRef
    32.Zhou Z, Wang S, Zhou W, Wang G, Jiang L, Li W, Shuquin S, Liu J, Sun G, Xin Q (2003) Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell. Chem Commu 2003:394–395. doi: 0.1039/b211075j
    33.Bonesi A, Moreno MS, Triaca WE, Castro Luna AM (2010) Modified catalytic materials for ethanol oxidation. Int J Hydrog Energy 35:5999–6004. doi:10.​1016/​j.​ijhydene.​2009.​12.​093 CrossRef
    34.Ribadeneira E, Hayos BA (2008) Evaluation fo Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells. J Power Sources 180:238–242. doi:10.​1016/​j.​jpowsour.​2008.​01.​084 CrossRef
    35.Biegler T, Rand DAJ, Woods R (1971) Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorption. J Electroanal Chem 29:269–277. doi:10.​1016/​S0022-0728(71)80089-X CrossRef
    36.Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem 563:81–89. doi:10.​1016/​j.​jelechem.​2003.​08.​019 CrossRef
    37.Antolini E, Colmati F, Gonzalez ER (2007) Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt–Sn alloy catalysts. Electrochem Commun 9:398–404. doi:10.​1016/​j.​elecom.​2006.​10.​012 CrossRef
    38.Cunha EM, Ribeiro J, Kokoh KB, de Andrade AR (2011) Preparation, characterization and application of Pt-Ru-Sn/C trimetallic electrocatalysts for ethanol oxidation in direct fuel cell. Int J Hydrog Energy 36:11034–11042. doi:10.​1016/​j.​ijhydene.​2011.​06.​011 CrossRef
    39.Rousseau S, Coutanceau C, Lamy C, L’eger J-M (2006) Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J Power Sources 158:18–24. doi:10.​1016/​j.​jpowsour.​2005.​08.​027 CrossRef
    40.Lamy C, Rousseau S, Belgsir E, Coutanceau C, Léger J-M (2004) Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49:3901–3908. doi:10.​1016/​j.​electacta.​2004.​01.​078 CrossRef
    41.Vigier F, Coutanceau C, Perrard A, Belgsir E, Lamy C (2004) Development of anode catalysts for a direct ethanol fuel cell. J Appl Electrochem 34:439–446. doi:10.​1023/​B:​JACH.​0000016629.​98535.​ad CrossRef
    42.Chen G, Delafuente DA, Sarangapani S, Mallouk TE (2001) Combinatorial discovery of bifunctional oxygen reduction-water oxidation electrocatalysts for regenerative fuel cells. Catal Today 67:341–355. doi:10.​1016/​S0920-5861(01)00327-3 CrossRef
    43.Woodward RB, Hoffman R (1965) Selection rules for concerted cycloaddition reactions. J Am Chem Soc 87:2046–2048. doi:10.​1021/​ja01087a034 CrossRef
    44.Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation. Electrochim Acta 50:5384–5389. doi:10.​1016/​j.​electacta.​2005.​03.​018 CrossRef
    45.Xia XH (1999) New insights into the influence of upd Sn on the oxidation of formic acid on platinum in acidic solution. Electrochim Acta 45:1057–1066. doi:10.​1016/​S0013-4686(99)00309-6 CrossRef
  • 作者单位:K. Ponmani (1)
    S.M. Nayeemunisa (1) (2)
    S. Kiruthika (3)
    B. Muthukumaran (1)

    1. Department of Chemistry, Presidency College, Chennai, 600 005, India
    2. Department of Chemistry, Justice Basheer Ahmed Sayeed College for Women, Chennai, 600 018, India
    3. Department of Chemical Engineering, SRM University, Chennai, 603 203, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
In the present work, carbon-supported Pt–Sn, Pt–Ru, and Pt–Sn–Ru electrocatalysts with different atomic ratios were prepared by alcohol-reduction method to study the electro-oxidation of ethanol in membraneless fuel cells. The synthesized electrocatalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses. The prepared catalysts had similar particle morphology, and their particle sizes were 2–5 nm. The electrocatalytic activities were characterized by cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results obtained at room temperature showed that the addition of Sn and Ru to the pure Pt electrocatalyst significantly improved its performance in ethanol electro-oxidation. The onset potential for ethanol electro-oxidation was 0.2 V vs. Ag/AgCl, in the case of the ternary Pt–Sn–Ru/C catalysts, which was lower than that obtained for the pure Pt catalyst (0.4 V vs. Ag/AgCl). During the experiments performed on single membraneless fuel cells, Pt − Sn − Ru/C (70:10:20) performed better among all the catalysts prepared with power density of 36 mW/cm2. The better performance of ternary Pt–Sn–Ru/C catalysts may be due to the formation of a ternary alloy and the smaller particle size.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700