用户名: 密码: 验证码:
Molecular inclusion of PCB126 by beta-cyclodextrin: a combined molecular dynamics simulation and quantum chemical study
详细信息    查看全文
  • 作者:Peng Liu ; Hao Xu ; Dongju Zhang ; Jinhua Zhan
  • 关键词:Polychlorinated biphenyls ; Beta ; cyclodextrin ; Complexation ; Molecular dynamics ; Quantum chemistry
  • 刊名:Journal of Inclusion Phenomena and Macrocyclic Chemistry
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:76
  • 期:3-4
  • 页码:301-309
  • 全文大小:708KB
  • 参考文献:1. Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., van Leeuwen, F.X.R., Liem, A.K.D., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Warn, F., Zacharewski, T.: Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 106, 775-92 (1998) CrossRef
    2. Safe, S.H.: Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit. Rev. Toxicol. 24, 87-49 (1994) CrossRef
    3. Fischer, L.J., Seegal, R.F., Ganey, P.E., Pessah, I.N., Kodavanti, P.R.S.: Symposium overview: toxicity of non-coplanar PCBs. Toxicol. Sci. 41, 49-1 (1998)
    4. Zhang, Q.Z., Li, S.Q., Qu, X.H., Shi, X.Y., Wang, W.X.: A quantum mechanical study on the formation of PCDD/Fs from 2-chlorophenol as precursor. Environ. Sci. Technol. 42, 7301-308 (2008) CrossRef
    5. Qu, X.H., Wang, H., Zhang, Q.Z., Shi, X.Y., Xu, F., Wang, W.X.: Mechanistic and kinetic studies on the homogeneous gas-phase formation of PCDD/Fs from 2,4,5-trichlorophenol. Environ. Sci. Technol. 43, 4068-075 (2009) CrossRef
    6. Gentleman, D.J.: PCB POP. Environ. Sci. Technol. 44, 2747-748 (2010) CrossRef
    7. Hornbuckle, K., Robertson, L.: Polychlorinated biphenyls (PCBs): sources, exposures, toxicities. Environ. Sci. Technol. 44, 2749-751 (2010) CrossRef
    8. Kumar, K.S., Kannan, K., Corsolini, S., Evans, T., Giesy, J.P., Nakanishi, J., Masunaga, S.: Polychlorinated dibenzo- / p-dioxins, dibenzofurans and polychlorinated biphenyls in polar bear, penguin and south polar skua. Environ. Pollut. 119, 151-61 (2002) CrossRef
    9. Macdonald, R.W., Barrie, L.A., Bidleman, T.F., Diamond, M.L., Gregor, D.J., Semkin, R.G., Strachan, W.M.J., Li, Y.F., Wania, F., Alaee, M., Alexeeva, L.B., Backus, S.M., Bailey, R., Bewers, J.M., Gobeil, C., Halsall, C.J., Harner, T., Hoff, J.T., Jantunen, L.M.M., Lockhart, W.L., Mackay, D., Muir, D.C.G., Pudykiewicz, J., Reimer, K.J., Smith, J.N., Stern, G.A., Schroeder, W.H., Wagemann, R., Yunker, M.B.: Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci. Total Environ. 254, 93-34 (2000) CrossRef
    10. Binelli, A., Provini, A.: The PCB pollution of Lake Iseo (N. Italy) and the role of biomagnification in the pelagic food web. Chemosphere 53, 143-51 (2003) CrossRef
    11. Pan, J., Yang, Y., Geng, C., Yeung, L.W.Y., Cao, X., Dai, T.: Polychlorinated biphenyls, polychlorinated dibenzo- / p-dioxins and dibenzofurans in marine and lacustrine sediments from the Shandong Peninsula, China. J. Hazard. Mater. 176, 274-79 (2010) CrossRef
    12. Ramadass, P., Meerarani, P., Toborek, M., Robertson, L.W., Hennig, B.: Dietary flavonoids modulate PCB-induced oxidative stress, CYP1A1 induction, and AhR-DNA binding activity in vascular endothelial cells. Toxicol. Sci. 76, 212-19 (2003) CrossRef
    13. Oakley, G.G., Devanaboyina, U., Robertson, L.W., Gupta, R.C.: Oxidative DNA damage induced by activation of polychlorinated biphenyls (PCBs): implications for PCB-induced oxidative stress in breast cancer. Chem. Res. Toxicol. 9, 1285-292 (1996) CrossRef
    14. Cogliano, V.J.: Assessing the cancer risk from environmental PCBs. Environ. Health Perspect. 106, 317-23 (1998) CrossRef
    15. Ulbrich, B., Stahlmann, R.: Developmental toxicity of polychlorinated biphenyls (PCBs): a systematic review of experimental data. Arch. Toxicol. 78, 252-68 (2004)
    16. Hestermann, E.V., Stegeman, J.J., Hahn, M.E.: Relative contributions of affinity and intrinsic efficacy to aryl hydrocarbon receptor ligand potency. Toxicol. Appl. Pharmacol. 168, 160-72 (2000) CrossRef
    17. Brunstrom, B., Halldin, K.: EROD induction by environmental contaminants in avian embryo livers. Comp. Biochem. Physiol. C 121, 213-19 (1998)
    18. Lores, M., Llompart, M., Gonzalez-Garcia, R., Gonzalez-Barreiro, C., Cela, R.: On-fibre photodegradation studies of polychlorinated biphenyls using SPME–GC–MS–MS: a new approach. Chemosphere 47, 607-15 (2002) CrossRef
    19. Lores, M., Llompart, M., Gonzalez-Garcia, R., Gonzalez-Barreiro, C., Cela, R.: Photolysis of polychlorinated biphenyls by solid-phase microextraction “on-fibre-versus aqueous photodegradation. J. Chromatogr. A 963, 37-7 (2002) CrossRef
    20. Chiarenzelli, J.R., Scrudato, R.J., Wunderlich, M.L., Pagano, J.J.: Combined steam distillation and electrochemical peroxidation (ECP) treatment of river sediment contaminated by PCBs. Chemosphere 45, 1159-165 (2001) CrossRef
    21. Arienzo, M., Chiarenzelli, J., Scrudato, R., Pagano, J., Falanga, L., Connor, B.: Iron-mediated reactions of polychlorinated biphenyls in electrochemical peroxidation process (ECP). Chemosphere 44, 1339-346 (2001) CrossRef
    22. Wiegel, J., Wu, Q.: Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol. Ecol. 32, 1-5 (2000) CrossRef
    23. Pieper, D.H.: Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 67, 170-91 (2005) CrossRef
    24. Borja, J., Taleon, D.M., Auresenia, J., Gallardo, S.: Polychlorinated biphenyls and their biodegradation. Process Biochem. 40, 1999-013 (2005) CrossRef
    25. Gavlasova, P., Kuncova, G., Kochankova, L., Mackova, M.: Whole cell biosensor for polychlorinated biphenyl analysis based on optical detection. Int. Biodeterior. Biodegrad. 62, 304-12 (2008) CrossRef
    26. Yang, Y., Meng, G.: Ag dendritic nanostructures for rapid detection of polychlorinated biphenyls based on surface-enhanced Raman scattering effect. J. Appl. Phys. 107, 44315-4319 (2010) CrossRef
    27. Li, M., Meng, G., Huang, Q., Yin, Z., Wu, M., Zhang, Z., Kong, M.: Prototype of a porous ZnO SPV-based sensor for PCB detection at room temperature under visible light illumination. Langmuir 26, 13703-3706 (2010) CrossRef
    28. Huang, Z., Meng, G., Huang, Q., Yang, Y., Zhu, C., Tang, C.: Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater. 22, 4136-139 (2010) CrossRef
    29. Haglund, P., Korytar, P., Danielsson, C., Jordi, D., Wiberg, K., Leonards, P., Brinkman, U., Boer, J.: GC?×?GC-ECD: a promising method for the determination of dioxins and dioxin-like PCBs in food and feed. Anal. Bioanal. Chem. 390, 1815-827 (2008) CrossRef
    30. Buzitis, J., Ylitalo, G.M., Krahn, M.M.: Rapid method for determination of dioxin-like polychlorinated biphenyls and other congeners in marine sediments using sonic extraction and photodiode array detection. Arch. Environ. Contam. Toxicol. 51, 337-46 (2006) CrossRef
    31. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743-753 (1998) CrossRef
    32. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033-046 (2004) CrossRef
    33. Vyas, A., Saraf, S., Saraf, S.: Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 62, 23-2 (2008) CrossRef
    34. Messner, M., Kurkov, S.V., Jansook, P., Loftsson, T.: Self-assembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm. 387, 199-08 (2010) CrossRef
    35. Szente, L., Szejtli, J.: Cyclodextrins as food ingredients. Trends Food Sci. Technol. 15, 137-42 (2004) CrossRef
    36. Szejtli, J., Szente, L.: Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm. 61, 115-25 (2005) CrossRef
    37. Brusseau, M.L., Wang, X., Hu, Q.: Enhanced transport of low-polarity organic compounds through soil by cyclodextrin. Environ. Sci. Technol. 28, 952-56 (1994) CrossRef
    38. Leitgib, L., Gruiz, K., Fenyvesi, E., Balogh, G., Muranyi, A.: Development of an innovative soil remediation: “cyclodextrin-enhanced combined technology- Sci. Total Environ. 392, 12-1 (2008) CrossRef
    39. Dean, J.R., Scott, W.C.: Recent developments in assessing the bioavailability of persistent organic pollutants in the environment. Trends Anal. Chem. 23, 609-18 (2004) CrossRef
    40. Sawicki, R., Mercier, L.: Evaluation of mesoporous cyclodextrin–silica nanocomposites for the removal of pesticides from aqueous media. Environ. Sci. Technol. 40, 1978-983 (2006) CrossRef
    41. Fava, F., Gioia, D.D., Marchetti, L.: Cyclodextrin effects on the ex-Situ bioremediation of a chronically polychlorobiphenyl-contaminated soil. Biotechnol. Bioeng. 58, 345-55 (1998) CrossRef
    42. Fava, F., Ciccotosto, V.F.: Effects of randomly methylated-β-cyclodextrins (RAMEB) on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in three pristine soils spiked with a transformer oil. Appl. Microbiol. Biotechnol. 58, 393-99 (2002) CrossRef
    43. Fava, F., Bertin, L., Fedi, S., Zannoni, D.: Methyl-β-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnol. Bioeng. 81, 381-90 (2003) CrossRef
    44. Ehsan, S., Prasher, S.O., Marshall, W.D.: Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere 68, 150-58 (2007) CrossRef
    45. Kida, T., Nakano, T., Fujino, Y., Matsumura, C., Miyawaki, K., Kato, E., Akashi, M.: Complete removal of chlorinated aromatic compounds from oils by channel-type γ-cyclodextrin assembly. Anal. Chem. 80, 317-20 (2008) CrossRef
    46. Shao, D., Sheng, G., Chen, C., Wang, X., Nagatsu, M.: Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79, 679-85 (2010) CrossRef
    47. Safe, S.: Toxicology, structure–function relationship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems. Environ. Health Perspect. 100, 259-68 (1993) CrossRef
    48. Vezina, C.M., Walker, N.J., Olson, J.R.: Subchronic exposure to TCDD, PeCDF, PCB126, and PCB153: effect on hepatic gene expression. Environ. Health Perspect. 112, 1636-644 (2004) CrossRef
    49. Li, L.A., Wang, P.W., Chang, L.W.: Polychlorinated biphenyl 126 stimulates basal and inducible aldosterone biosynthesis of human adrenocortical H295R cells. Toxicol. Appl. Pharmacol. 195, 92-02 (2004) CrossRef
    50. Song, M.O., Freedman, J.H.: Activation of mitogen activated protein kinases by PCB126 (3,3-4,4-5-Pentachlorobiphenyl) in HepG2 cells. Toxicol. Sci. 84, 308-18 (2005) CrossRef
    51. Llabjani, V., Trevisan, J., Jones, K.C., Shore, R.F., Martin, F.L.: Binary mixture effects by PBDE congeners (47, 153, 183, or 209) and PCB congeners (126 or 153) in MCF-7 cells: biochemical alterations assessed by IR spectroscopy and multivariate analysis. Environ. Sci. Technol. 44, 3992-998 (2010) CrossRef
    52. Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306-17 (2001)
    53. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701-718 (2005) CrossRef
    54. Hess, B., Kutzner, C., Van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435-47 (2008) CrossRef
    55. Zhang, H., Feng, W., Li, C., Tan, T.: Investigation of the inclusions of puerarin and daidzin with β-cyclodextrin by molecular dynamics simulation. J. Phys. Chem. B 114, 4876-883 (2010) CrossRef
    56. Brocos, P., Diaz-Vergara, N., Banquy, X., Perez-Casas, S., Costas, M., Pineiro, A.: Similarities and differences between cyclodextrin-sodium dodecyl sulfate host–guest complexes of different stoichiometries: molecular dynamics simulations at several temperatures. J. Phys. Chem. B 114, 12455-2467 (2010) CrossRef
    57. Schuettelkopf, A.W., van Aalten, D.M.F.: PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta. Crystallogr. D60, 1355-363 (2004)
    58. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J.: Interaction models for water in relation to protein hydration. In: Pullman, B. (ed.) Intermolecular Forces, pp. 331-42. Reidel, Dordrecht (1981) CrossRef
    59. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089-0092 (1993) CrossRef
    60. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577-593 (1995) CrossRef
    61. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684-690 (1984) CrossRef
    62. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision D. 01. Gaussian, Pittsburgh (2004)
    63. Becke, A.D.: Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96, 2155-160 (1992) CrossRef
    64. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785-89 (1988) CrossRef
    65. Weinzinger, P., Weiss-Greiler, P., Snor, W., Viernstein, H., Wolschann, P.: Molecular dynamics simulations and quantum chemical calculations on β-cyclodextrin–spironolactone complex. J. Incl. Phenom. Macrocycl. Chem. 57, 29-3 (2007) CrossRef
    66. Snor, W., Liedl, E., Weiss-Greiler, P., Viernstein, H., Wolschann, P.: Density functional calculations on meloxicam-β-cyclodextrin inclusion complexes. Int. J. Phytorem. 381, 146-52 (2009)
    67. Steiner, T., Koellner, G.: Crystalline β-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. J. Am. Chem. Soc. 116, 5122-128 (1994) CrossRef
    68. Liu, P., Zhang, D.J., Zhan, J.H.: Investigation on the inclusions of PCB52 with cyclodextrins by performing DFT calculations and molecular dynamics simulations. J. Phys. Chem. A 114, 13122-3128 (2010) CrossRef
  • 作者单位:Peng Liu (1)
    Hao Xu (1)
    Dongju Zhang (1)
    Jinhua Zhan (1)

    1. Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, Shandong University, Jinan, 250100, People’s Republic of China
  • ISSN:1573-1111
文摘
The effective enrichment and identification of lowly concentrated polychlorinated biphenyls (PCBs) in the environment is attracting much research attention due to human health concerns raised from their emissions. Cyclodextrins (CDs) are known to be capable to form inclusion complexes with a variety of organic molecules. The purpose of this study is to provide theoretical evidences whether CDs can form energetically stable inclusion complexes with PCBs through a host–guest interaction, and if so, whether infrared and Raman techniques are suitable for the detection of CD-modified PCBs. Focusing on a representative PCB molecule, 3,3-4,4-5-pentachlorobiphenyl (PCB126), we studied its molecular inclusion by β-CD (BCD) by performing molecular dynamics simulations and density functional theory calculations. Calculated results show that PCB126 and BCD preferentially form the stable 1:1 inclusion complex. The calculated IR spectra of the 1:1 inclusion complexes mainly present the spectra features of BCD and give only a slight indication for bands of the guest molecule. In contrast, the characteristic vibration modes of the guest molecule are remarkably prominent in the Raman spectra of the inclusion complexes. Based on the present results, we propose that BCD can potentially serve as a candidate for including PCB126 to form the stable 1:1 host–guest complex, and that Raman spectroscopy technology is expected to be suitable for the identification of the CD-modified PCBs, whereas IR spectroscopy is not feasible for such an application.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700