用户名: 密码: 验证码:
Cartan Equivalence Problem for 5-Dimensional Bracket-Generating CR Manifolds in \(\mathbb {C}^4\)
详细信息    查看全文
文摘
We reduce to various absolute parallelisms, namely to certain \(\{e\}\)-structures on manifolds of dimensions 7, 6, 5, the biholomorphic equivalence problem or the intrinsic CR equivalence problem for 5-dimensional CR-generic submanifolds \(M^5 \subset \mathbb {C}^4\) of CR dimension 1 and of codimension 3 whose CR bundle \(T^{ 1, 0} M\) satisfies the specific Lie-bracket generating property: $$\begin{aligned} \begin{aligned} \mathbb {C}\otimes _\mathbb {R}TM \,=\, \Gamma \big (T^{1,0}M\big ) \oplus \Gamma \big (\overline{T^{1,0}M}\big )&\oplus \big [ \Gamma \big (T^{1,0}M\big ),\, \Gamma \big (\overline{T^{1,0}M}\big ) \big ] \\&\oplus \big [ \Gamma \big (T^{1,0}M\big ),\, \big [ \Gamma \big (T^{1,0}M\big ),\, \Gamma \big (\overline{T^{1,0}M}\big ) \big ]\big ] \\&\oplus \big [ \Gamma \big (\overline{T^{1,0}M}\big ),\, \big [ \Gamma \big (T^{1,0}M\big ),\, \Gamma \big (\overline{T^{1,0}M}\big ) \big ]\big ], \end{aligned} \end{aligned}$$and which are known to be geometry-preserving deformations of the natural cubic model \(M_\mathsf{c}^5 \subset \mathbb {C}^4\) of Beloshapka having, in coordinates \((z, w_1, w_2, w_3) \in \mathbb {C}^4\), the three graphed equations: $$\begin{aligned} \begin{aligned} \mathrm{Im}\,w_1&= z\overline{ z}, \\ \mathrm{Im}\,w_2&= z\overline{z}\, \big (z+\overline{z}\big ), \\ \mathrm{Im}\,w_3&= -\,i\,z\overline{z}\, \big (z-\overline{z}\big ). \end{aligned} \end{aligned}$$On the way, we develop a new “Differential Algebra Calculus” that enables us to explore in depth some nonlinear branching features while inspecting incoming essential torsions and intermediate Cartan curvatures.KeywordsCR manifoldsCartan equivalence problemInfinitesimal CR automorphismsDifferential algebraTorsion and curvatureMathematics Subject Classification32M0532V4053C1058A15References1.Aghasi, M., Merker, J., Sabzevari, M.: Effective Cartan-Tanaka connections for \({\cal {C}}^{6}\)-smooth strongly pseudoconvex hypersurfaces \(M^3 \subset \mathbb{C}^2\). C. R. Acad. Sci. Paris Ser. I 349, 845–848 (2011)MathSciNetMATHCrossRefGoogle Scholar2.Baouendi, S., Ebenfelt, P., Rothschild, L.P.: Real Submanifolds in Complex Space and Their Mappings. Princeton Mathematical Series. Princeton University Press, Princeton (1999)MATHGoogle Scholar3.Bellaïche, : The tangent space in sub-Riemannian geometry. Sub-Riemannian Geometry. Progress in Mathematics, vol. 144, pp. 1–78. Birkhäuser, Basel (1996)CrossRefGoogle Scholar4.Beloshapka, V.K.: Universal models for real submanifolds. Math. Notes 75(4), 475–488 (2004)MathSciNetMATHCrossRefGoogle Scholar5.Beloshapka, V.K., Kossovskiy, I.: Classification of homogeneous CR-manifolds in dimension 4. J. Math. Anal. Appl. 374(2), 655–672 (2011)6.Beloshapka, V.K., Ezhov, V., Schmalz, G.: Canonical Cartan connection and holomorphic invariants on Engel CR manifolds. Russ. J. Math. Phys. 14(2), 121–133 (2007)MathSciNetMATHCrossRefGoogle Scholar7.Boggess, A.: CR manifolds and the tangential Cauchy–Riemann complex. Studies in Advanced Mathematics. CRC Press, Boca Raton (1991)Google Scholar8.Cartan, É.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, I. Ann. Math. Pura Appl. 11, 17–90 (1932)MathSciNetMATHCrossRefGoogle Scholar9.Cartan, É.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, II. Ann. Scuola Norm. Sup. Pisa 1, 333–354 (1932)MathSciNetMATHGoogle Scholar10.Chern, S.-S., Moser, J.: Real hypersurfaces in complex manifolds. Acta Math. 133, 219–271 (1975)MathSciNetMATHCrossRefGoogle Scholar11.Epstein, C.: Lectures on indices and relative indices on contact and CR-manifolds. Woods Hole mathematics. Knots Everything, vol. 34, pp. 27–93. World Science Publisher, Hackensack (2004)CrossRefGoogle Scholar12.Ezhov, V., Isaev, A.V., Schmalz, G.: Invariants of elliptic and hyperbolic CR-structures of codimension 2. Int. J. Math. 10(1), 1–52 (1999)MathSciNetMATHCrossRefGoogle Scholar13.Ezhov, V., McLaughlin, B., Schmalz, G.: From Cartan to Tanaka: getting real in the complex world. Not. Am. Math. Soc. 58(1), 20–27 (2011)MathSciNetMATHGoogle Scholar14.Fels, G., Kaup, W.: Classification of Levi degenerate homogeneous CR-manifolds in dimension 5. Acta Math. 201(1), 1–82 (2008)MathSciNetMATHCrossRefGoogle Scholar15.Fels, G., Kaup, W.: CR-manifolds of dimension 5: a Lie algebra approach. J. Reine Angew. Math. 604, 47–71 (2007)MathSciNetMATHGoogle Scholar16.Gallo, E., Iriondo, M., Kozameh, C.: Cartan’s equivalence method and null coframes in general relativity. Class. Quantum Grav. 22, 1881–1901 (2005)MathSciNetMATHCrossRefGoogle Scholar17.Gardner, R.B.: The Method of Equivalence and Its Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 58, pp. 1–127. SIAM, Philadelphia (1989)CrossRefGoogle Scholar18.Goze, M., Khakimdjanov, Y.: Nilpotent Lie Algebras. Mathematics and Its Applications, vol. 361. Kluwer Academic Publishers Group, Dordrecht (1996)MATHCrossRefGoogle Scholar19.Isaev, A.: Spherical Tube Hypersurfaces. Lecture Notes in Mathematics, vol. 2020. Springer, Heidelberg (2011)MATHGoogle Scholar20.Isaev, A.: Affine rigidity of Levi degenerate tube hypersurfaces. arXiv:1404.6148 21.Isaev, A., Zaitsev, D.: Reduction of five-dimensional uniformly Levi degenerate CR structures to absolute parallelisms. J. Geom. Anal. 23(3), 1571–1605 (2013)MathSciNetMATHCrossRefGoogle Scholar22.Jacobowitz, H.: An introduction to CR structures. Mathematical Surveys and Monographs, vol. 32. American Mathematical Society, Providence (1990)MATHGoogle Scholar23.Loboda, A.V.: Homogeneous real hypersurfaces in \(\mathbb{C}^3\) with two-dimensional isotropy groups. Proc. Steklov Inst. Math. 235(4), 107–135 (2001)MathSciNetMATHGoogle Scholar24.Loboda, A.V.: Homogeneous strictly pseudoconvex hypersurfaces in \(\mathbb{C}^3\) with two-dimensional isotropy groups Sb. Mathematics 192(11–12), 1741–1761 (2001)MathSciNetMATHGoogle Scholar25.Medori, C., Spiro, A.: The equivalence problem for five-dimensional Levi degenerate CR manifolds. Int. Math. Res. Not. IMRN 20, 5602–5647 (2014)MathSciNetMATHGoogle Scholar26.Merker, J.: On the local geometry of generic submanifolds of \(\mathbb{C} ^n\) and the analytic reflection principle. J. Math. Sci. 125(6), 751–824 (2005)MathSciNetMATHCrossRefGoogle Scholar27.Merker, J.: Lie symmetries and CR geometry. J. Math. Sci. 154(6), 817–922 (2008)MathSciNetMATHCrossRefGoogle Scholar28.Merker, J.: Sophus Lie’s Theory of transformation groups I, a contemporary approach and translation, p. xv+643. Springer-Verlag, Berlin (2015). arXiv:1003.3202 29.Merker, J.: Nonrigid spherical real analytic hypersurfaces in \(\mathbb{ C}^2\). Complex Var. Elliptic Equ. 55(12), 1155–1182 (2011)MathSciNetMATHCrossRefGoogle Scholar30.Merker, J.: Equivalences of \(5\)-dimensional CR manifolds, III: Six models and (very) elementary normalizations. arXiv:1311.7522 31.Merker, J.: Equivalences of \(5\)-dimensional CR manifolds, IV: Six ambiguity matrix groups (Initial G-structures). arXiv:1312.1084 32.Merker, J.: Equivalences of \(5\)-dimensional CR-manifolds V: Six initial frames and coframes; Explicitness obstacles. arXiv:1312.5688 33.Merker, J.: Complex Geometry and Dynamics. In: Fornæss, J. E., Irgens, M., Wold, E. F. (eds.) Abel Symposium 2013, vol. 10. Springer International Publishing (2015). arXiv:1405.7625 34.Merker, J., Pocchiola, S., Sabzevari, M.: Equivalences of 5-dimensional CR manifolds, II, 93 pages, 5 figures. arXiv:1311.5669 35.Merker, J., Porten, E.: Holomorphic extension of CR functions, envelopes of holomorphy and removable singularities. Int. Math. Res. Surveys, 2006 36.Merker, J., Sabzevari, M.: Explicit expression of Cartan’s connections for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere. Cent. Eur. J. Math. 10(5), 1801–1835 (2012)MathSciNetMATHCrossRefGoogle Scholar37.Merker, J., Sabzevari, M.: Maple worksheets, available on demand38.Olver, P.J.: Equivalence, Invariants and Symmetry, p. xvi+525. Cambridge University Press, Cambridge (1995)MATHCrossRefGoogle Scholar39.Pocchiola, S.: Explicit absolute parallelism for 2-nondegenerate real hypersurfaces \(M^{5} \subset {{\mathbb{C}}}^3\) of constant Levi rank 1, arXiv:1312.6400 40.Pocchiola, S.: Canonical Cartan connection for 4-dimensional CR-manifolds belonging to general class \({\sf II}\). arXiv:1405.1341 41.Pocchiola, S.: Canonical Cartan connection for 5-dimensional CR-manifolds belonging to general class \({\sf III}_{\sf 2}\). arXiv:1405.1342 42.Poincaré, H.: Les fonction analytiques de deux variables et la représentation conforme. Rend. Circ. Math. Palermo 23, 185–220 (1907)MATHCrossRefGoogle Scholar43.Reutenauer, C.: Free Lie Algebras. London Mathematical Society Monograph, New Series 7. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993)MATHGoogle Scholar44.Sabzevari, M., Merker, J.: The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces \(M^{3} \subset {{\mathbb{C}}}^2\). Izvestiya Math. 78, 1158–1194 (2014)MathSciNetMATHCrossRefGoogle Scholar45.Sabzevari, M., Merker, J.: Cartan equivalences for 5-dimensional CR-manifolds in \(\mathbb{C}^4\). arXiv:1401.4297 46.Sabzevari, M., Hashemi, A., Alizadeh, B.M., Merker, J.: Applications of differential algebra for computing Lie algebras of infinitesimal CR-automorphisms. Sci. China Math. 57(9), 1811–1834 (2014)MathSciNetMATHCrossRefGoogle Scholar47.Sabzevari, M., Merker, J., Pocchiola, S.: Canonical Cartan connections on maximally minimal generic submanifolds \(M^5\subset \mathbb{C}^4\). Elect. Res. Announ. Math. Sci. 21, 153–166 (2014)MathSciNetGoogle Scholar48.Schmalz, G., Spiro, A.: Explicit construction of a Chern-Moser connection for CR manifolds of codimension two. Ann. Mat. Pura Appl. 4 185(3), 337–379 (2006)MathSciNetMATHCrossRefGoogle Scholar49.Sharpe, R.W.: Differential Geometry: Cartan’s generalization of Klein’s Erlangen program. Graduate Texts in Mathematics, vol. 166. Springer, New York (1997)MATHGoogle Scholar50.Sternberg, S.: Lectures on Differential Geometry. Prentice-Hall, Inc., Englewood Cliffs (1964)MATHGoogle Scholar51.Tanaka, N.: On the pseudo-conformal geometry of hypersurfaces of the space of \(n\) complex variables. J. Math. Soc. Jpn. 14, 397–429 (1962)MathSciNetMATHCrossRefGoogle Scholar52.Trèves, F.: Hypo-Analytic Structures, Local theory. Princeton Mathematical Series, vol. 40. Princeton University Press, Princeton (1992)MATHGoogle Scholar53.Webster, S.M.: A proof of the Newlander–Nirenberg theorem. Math. Z. 201(3), 303–316 (1989)MathSciNetMATHCrossRefGoogle Scholar54.Webster, S.M.: On the proof of Kuranishi’s embedding theorem. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(3), 183–207 (1989)MathSciNetMATHGoogle ScholarCopyright information© Mathematica Josephina, Inc. 2015Authors and AffiliationsJoël Merker1Email authorMasoud Sabzevari231.Départment de Mathématiques d’Orsay, Bâtiment 425, Faculté des SciencesUniversité Paris XI - OrsayOrsay CedexFrance2.Department of Pure MathematicsUniversity of ShahrekordShahrekordIran3.School of MathematicsInstitute for Research in Fundamental Sciences (IPM)TehranIran About this article CrossMark Print ISSN 1050-6926 Online ISSN 1559-002X Publisher Name Springer US About this journal Reprints and Permissions Article actions Export citation .RIS Papers Reference Manager RefWorks Zotero .ENW EndNote .BIB BibTeX JabRef Mendeley Share article Email Facebook Twitter LinkedIn Cookies We use cookies to improve your experience with our site. More information Accept Over 10 million scientific documents at your fingertips

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700