用户名: 密码: 验证码:
The effect of fibril length and architecture on the accessibility of reducing ends of cellulose Iα to Trichoderma reesei Cel7A
详细信息    查看全文
  • 作者:Patrick J. O’Dell ; Akshata R. Mudinoor ; Sanjai J. Parikh ; Tina Jeoh
  • 关键词:Cellulose fibril ; Microfibril ; Cellulose reducing end ; Cellobiohydrolase ; Bacterial cellulose
  • 刊名:Cellulose
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:22
  • 期:3
  • 页码:1697-1713
  • 全文大小:6,391 KB
  • 参考文献:Akerholm M, Salmen L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963-69View Article
    Atalla RH, Vanderhart DL (1984) Native cellulose—a composite of 2 distinct crystalline forms. Science 223:283-85View Article
    Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization—relation to polyphase structure of cellulose fibers. Ind Eng Chem 48:333-35. doi:10.-021/?ie50554a046 View Article
    Briois B, Saito T, Petrier C, Putaux JL, Nishiyama Y, Heux L, Molina-Boisseau S (2013) I-alpha ->I-beta transition of cellulose under ultrasonic radiation. Cellulose 20:597-03. doi:10.-007/?s10570-013-9866-x View Article
    Brown RM, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum—visualization of site of synthesis and direct measurement of in vivo process. Proc Natl Acad Sci USA 73:4565-569View Article
    Cruys-Bagger N, Elmerdahl J, Praestgaard E, Tatsumi H, Spodsberg N, Borch K, Westh P (2012) Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. J Biol Chem 287:18451-8458. doi:10.-074/?jbc.?M111.-34946 View Article
    Cruys-Bagger N, Tatsumi H, Ren GR, Borch K, Westh P (2013) Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain. Biochemistry-US 52:8938-948. doi:10.-021/?bi401210n View Article
    Davis MF, Wolfrum E, Jeoh T (2008) Selection of promising biomass feedstock lines using high-throughput spectrometric and enzymatic assays. In: Vermerris W (ed) Genetic improvement of bioenergy crops. New York, Springer
    Dibble CJ, Shatova TA, Jorgenson JL, Stickel JJ (2011) Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion. Biotechnol Prog 27:1751-759. doi:10.-002/?btpr.-69 View Article
    Dimarogona M, Topakas E, Christakopoulos P (2013) Recalcitrant polysaccharide degradation by novel oxidative biocatalysts. Appl Microbiol Biotechnol 97:8455-465. doi:10.-007/?s00253-013-5197-y View Article
    Divne C, Stahlberg J, Teeri TT, Jones A (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309-25View Article
    EERE (2013) Bioenergy technologies office multi-year program plan, May 2013. U. S. Department of energy, office of energy efficiency and renewable energy
    Frei E, Preston RD (1961) Cell wall organization and wall growth in the filamentous green Algae Cladophora and Chaetomorpha. II. Spiral structure and spiral growth proceedings of the Royal Society of London series B. Biol Sci 155:55-7. doi:10.-307/-0322 View Article
    French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885-96. doi:10.-007/?s10570-013-0030-4 View Article
    Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in Terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568-575. doi:10.-002/?macp.-00500008 View Article
    Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679-87. doi:10.-007/?s10570-006-9075-y View Article
    Henrissat B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio-Technology 3:722-26View Article
    Igarashi K (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 334:453
    Imai T, Sugiyama J (1998) Nanodomains of I-alpha and I-beta cellulose in algal microfibrils. Macromolecules 31:6275-279View Article
    Jeoh T, Wilson DB, Walker LP (2002) Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca Cel5A, Cel6B and Cel9A. Biotechnol Prog 18:760-69View Article
    Jeoh T, Ishizawa C, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112-22View Article
    Jeoh T, Santa-Maria MC, O’Dell PJ (2013) Assessing cellulose microfibrillar structure changes due to cellulase action. Carbohydrate Polymers 97:581-86. doi:10.-016/?j.?carbpol.-013.-5.-27 View Article
    Jung J, Sethi A, Gaiotto T, Han JJ, Jeoh T, Gnanakaran S, Goodwin PM (2013) Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging. J Biol Chem 288:24164-4172. doi:10.-074/?jbc.?M113.-55758 View Article
    Kadic A, Palmqvist B, Liden G (2014) Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed. Biotechnol Biofuels 7:77View Article
    Kern W (1990) The evolution of silicon wafer cleaning technology. J Electrochem Soc 137(6):18
  • 作者单位:Patrick J. O’Dell (1)
    Akshata R. Mudinoor (1)
    Sanjai J. Parikh (2)
    Tina Jeoh (1)

    1. Biological and Agricultural Engineering Department, University of California, Davis, CA, 95616, USA
    2. Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
The origin of the recalcitrance of cellulose fibrils to enzymatic hydrolysis is still poorly understood. In this study we examined the role of cellulose fibril lengths and fibril architecture, i.e. the fibrillar structure from lateral association of cellulose microfibrils, on the accessibility to a reducing-end specific cellobiohydrolase, Trichoderma reesei Cel7A (TrCel7A). Cellulose Iα fibrils from Gluconacetobacter xylinus and Cladophora aegagropila showed contrasting digestibility by TrCel7A. Where the bacterial cellulose (BC) fibrils from G. xylinus were rapidly hydrolyzed to near completion by TrCel7A (>99?%) in 120?h, under identical reaction conditions, TrCel7A hydrolysis of the algal cellulose (AC) fibrils from C. aegagropila was slow and limited (~30?%). Mechanically decreasing fibril lengths and increasing average reducing end concentrations by high intensity ultrasonication did not affect the hydrolysis rates of either BC or AC by TrCel7A. Moreover, ultrasonicated AC remained significantly less digestible by TrCel7A than BC despite higher available reducing-end concentrations. In contrast to previous observations of extensive fibrillation of BC by TrCel7A hydrolysis, AC fibrils subjected to hydrolysis by TrCel7A remained associated. The hydrolysis of AC fibrils by TrCel7A roughened the topography of the fibril surfaces in a manner suggesting erosion of microfibrils at the fibril surface. We speculate that the compact cross-sections of the AC microfibrils result in tightly associated fibrils that hinder enzyme access to available reducing ends while the flat, ribbon cross section of the BC microfibrils result in more loosely associated fibrils that more easily dissociate during hydrolysis to improve accessibility and overall digestibility by TrCel7A.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700