用户名: 密码: 验证码:
Thermoelastic coupling effect analysis for gyroscope resonator from longitudinal and flexural vibrations
详细信息    查看全文
  • 作者:Changlong Li ; Shiqiao Gao ; Shaohua Niu ; Haipeng Liu
  • 刊名:Microsystem Technologies
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:22
  • 期:5
  • 页码:1029-1042
  • 全文大小:1,425 KB
  • 参考文献:Achenbach J (1984) Wave propagation in elastic solids. Elsevier, AmsterdamMATH
    Bao M, Yang H (2007) Squeeze film air damping in MEMS. Sens Actuators A 136(1):3–27CrossRef
    Bustillo JM, Howe RT, Muller RS (1998) Surface micromachining for microelectromechanical systems. Proc IEEE 86(8):1552–1574CrossRef
    Dondi D, Bertacchini A, Brunelli D et al (2008) Modeling and optimization of a solar energy harvester system for self-powered wireless sensor networks. Ind Electron IEEE Trans 55(7):2759–2766CrossRef
    Duwel A, Candler RN, Kenny TW et al (2006) Engineering MEMS resonators with low thermoelastic damping. Microelectromechanical Syst J 15(6):1437–1445CrossRef
    Fu Y, Du H, Huang W et al (2004) TiNi-based thin films in MEMS applications: a review. Sens Actuators A 112(2):395–408CrossRef
    Guo FL, Rogerson GA (2003) Thermoelastic coupling effect on a micro-machined beam resonator. Mech Res Commun 30(6):513–518CrossRef MATH
    Hao Z, Xu Y, Durgam SK (2009) A thermal-energy method for calculating thermoelastic damping in micromechanical resonators. J Sound Vib 322(4):870–882CrossRef
    Jiao W, Song J, Guo F (2014) Thermoelastic damping of micro resonators operating in the longitudinal vibration mode: in comparison with the case of flexural vibration. Mech Res Commun 62:31–36CrossRef
    Kausinis S, Yee K, Barauskas R (2012) Estimation of thermo-elastic damping of vibrations in micro-electro-mechanical systems resonators: finite element modeling. J Micro/Nanolithography MEMS MOEMS 11(3): 033005-1-0330011
    Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B 61(8):5600CrossRef
    Nayfeh AH, Younis MI (2004) Modeling and simulations of thermoelastic damping in microplates. J Micromech Microeng 14(12):1711CrossRef
    Raiteri R, Grattarola M, Butt HJ et al (2001) Micromechanical cantilever-based biosensors. Sens Actuator B Chem 79(2):115–126CrossRef
    Shkel AM, Horowitz R, Seshia AA et al (1999) Dynamics and control of micromachined gyroscopes[C]//American Control Conference, 1999. Proc IEEE 3:2119–2124
    Söderkvist J (1994) Micromachined gyroscopes. Sens Actuators A 43(1):65–71CrossRef
    Srikar VT, Senturia SD (2002) Thermoelastic damping in fine-grained polysilicon flexural beam resonators. Microelectromechanical Syst J 11(5):499–504CrossRef
    Sun Y, Fang D, Soh AK (2006) Thermoelastic damping in micro-beam resonators. Int J Solids Struct 43(10):3213–3229CrossRef MATH
    Wong SJ, Fox CHJ, McWilliam S (2006) Thermoelastic damping of the in-plane vibration of thin silicon rings. J Sound Vib 293(1):266–285CrossRef
    Yang YJ, Gretillat MA, Senturia SD (1997) Effect of air damping on the dynamics of nonuniform deformations of microstructures[C]//Solid state sensors and actuators 1997. TRANSDUCERS’97 Chicago 1997 international conference on IEEE 2:1093–1096
    Younis MI (2011) MEMS linear and nonlinear statics and dynamics: mems linear and nonlinear statics and dynamics. Springer, UKCrossRef
    Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52(3):230
    Zener C (1938) Internal friction in solids II. General theory of thermoelastic internal friction. Phys Rev 53(1):90CrossRef MATH
    Zhang W, Turner K L (2004) Thermoelastic damping in the longitudinal vibration: analysis and simulation. In: ASME 2004 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, pp 145–149
    Zuo L, Scully B, Shestani J et al (2010) Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Mater Struct 19(4):045003CrossRef
  • 作者单位:Changlong Li (1)
    Shiqiao Gao (1)
    Shaohua Niu (1)
    Haipeng Liu (1)

    1. State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Room. 408, Haidian District, Beijing, China
  • 刊物类别:Engineering
  • 刊物主题:Electronics, Microelectronics and Instrumentation
    Nanotechnology
    Mechanical Engineering
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1858
  • 卷排序:22
文摘
The paper illustrates thermoelastic modeling, analysis and simulation solutions of gyroscope resonator from the longitudinal and transverse vibration modes. In the study, the sensitive components of gyroscope are the cantilever beams within the drive mode and the detection mode. Then, the effect of thermoelastic coupling, coupling strength on gyroscope performance is analyzed by two different numerical calculation methods, and the results are validated by FEM simulation solutions. The corresponding parameters which are analyzed in the study for thermoelatic coupling are temperature, thermoelastic damping (TED) and frequency shift ratio. It is found that the thermoelastic damping has the order of 10−4 at both transverse and longitudinal vibrations. And the shift frequency sharply increased and then gradually approaches the horizontal line at the longitudinal and flexural vibrations. Then the comparison of thermoelastic damping is studied at two vibration modes. Compared with longitudinal vibration, the thermoelastic damping for flexural vibration has a similar pattern, while the former’s peak value is twice lower than that of the latter.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700