用户名: 密码: 验证码:
Chromosomal structural changes and microsatellite variations in newly synthesized hexaploid wheat mediated by unreduced gametes
详细信息    查看全文
文摘
Allohexaploid wheat was derived from interspecific hybridization, followed by spontaneous chromosome doubling. Newly synthesized hexaploid wheat by crossing Triticum turgidum and Aegilops tauschii provides a classical model to understand the mechanisms of allohexaploidization in wheat. However, immediate chromosome level variation and microsatellite level variation of newly synthesized hexaploid wheat have been rarely reported. Here, unreduced gametes were applied to develop synthesized hexaploid wheat, NA0928, population by crossing T. turgidum ssp. dicoccum MY3478 and Ae. tauschii SY41, and further S0–S3 generations of NA0928 were assayed by sequential cytological and microsatellite techniques. We demonstrated that plentiful chromosomal structural changes and microsatellite variations emerged in the early generations of newly synthesized hexaploid wheat population NA0928, including aneuploidy with whole-chromosome loss or gain, aneuploidy with telosome formation, chromosome-specific repeated sequence elimination (indicated by fluorescence in situ hybridization) and microsatellite sequence elimination (indicated by sequencing), and many kinds of variations have not been previously reported. Additionally, we reported a new germplasm, T. turgidum accession MY3478 with excellent unreduced gametes trait, and then succeeded to transfer powdery mildew resistance from Ae. tauschii SY41 to synthesized allohexaploid wheat population NA0928, which would be valuable resistance resources for wheat improvement.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700