用户名: 密码: 验证码:
Synthesis of PtNFs/PANI/NG with enhanced electrocatalytic activity towards methanol oxidation
详细信息    查看全文
  • 作者:Shiping Luo (1)
    Yu Chen (1)
    Aijuan Xie (1)
    Yong Kong (1)
    Yuwei Tao (2)
    Yule Pan (1)
    Chao Yao (1)

    1. School of Petrochemical Engineering
    ; Changzhou University ; Changzhou ; 213164 ; People鈥檚 Republic of China
    2. Information Center
    ; Changzhou University ; Changzhou ; 213164 ; People鈥檚 Republic of China
  • 关键词:N ; doped graphene ; Polyaniline ; Pt nanoflowers ; Methanol oxidation
  • 刊名:Ionics
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:21
  • 期:5
  • 页码:1277-1286
  • 全文大小:1,743 KB
  • 参考文献:1. Zhao, X, Yin, M, Ma, L, Liang, L, Liu, CP, Liao, JH, Lu, TH, Xing, W (2011) Energy Environ Sci 4: pp. 2736-2753 CrossRef
    2. Sundarrajan, S, Allakhverdiev, SI, Ramakrishna, S (2012) Int J Hydrogen Energy 37: pp. 8765-8786 CrossRef
    3. Wang, YS, Yang, SY, Li, SM, Tien, HW, Hsiao, ST, Liao, WH, Liu, CH, Chang, KH, Ma, CCM, Hu, CC (2013) Electrochim Acta 87: pp. 261-269 CrossRef
    4. Zhong, CJ, Luo, J, Fang, B, Wanjala, BN, Njoki, PN, Loukrakpam, R, Yin, J (2010) Nanotechnology 21: pp. 062001 CrossRef
    5. Zhou, Y, Neyerlin, K, Olson, TS, Pylypenko, S, Bult, J, Dinh, HN, Gennett, T, Shao, ZP, O'Hayre, R (2010) Energy Environ Sci 3: pp. 1437-1446 CrossRef
    6. Du, S (2010) J Power Sources 195: pp. 289-292 CrossRef
    7. Koenigsmann, C, Wong, SS (2011) Energy Environ Sci 4: pp. 1161-1176 CrossRef
    8. Lv, R, Cui, T, Jun, MS, Zhang, Q, Cao, AY, Su, DS, Zhang, ZJ, Yoon, SH, Miyawaki, J, Mochida, I, Kang, FY (2011) Adv Funct Mater 21: pp. 999-1006 CrossRef
    9. Xiong, B, Zhou, Y, O鈥橦ayre, R, Shao, Z (2013) Appl Surf Sci 266: pp. 433-439 CrossRef
    10. Sharma, S, Pollet, BG (2012) J Power Sources 208: pp. 96-119 CrossRef
    11. Hu, Y, Wu, P, Yin, Y, Zhang, H, Cai, CX (2012) Appl Catal B Environ 111: pp. 208-217 CrossRef
    12. Naidoo, QL, Naidoo, S, Petrik, L, Nechaev, A, Ndungu, P (2012) Int J Hydrogen Energy 37: pp. 9459-9469 CrossRef
    13. Zhao, Y, Zhou, Y, Xiong, B, Wang, J, Chen, X, O鈥橦ayre, R, Shao, Z (2013) J Solid State 17: pp. 1089-1098
    14. Zhao, J, Zhang, L, Xue, H, Wang, ZB, Hu, HQ (2012) RSC Adv 2: pp. 9651-9659 CrossRef
    15. Xin, Y, Liu, J, Jie, X, Wang, Z, Hu, H (2012) Electrochim Acta 60: pp. 354-358 CrossRef
    16. Chu, SW, Baek, SJ, Kim, DC, Seo, S, Kim, JS, Park, YW (2012) Synth Met 162: pp. 1689-1693 CrossRef
    17. Yao, Z, Nie, H, Yang, Z, Zhou, XM, Liu, Z, Huang, SM (2012) Chem Commun 48: pp. 1027-1029 CrossRef
    18. Zhang, LS, Liang, XQ, Song, WG, Wu, ZY (2010) PCCP 12: pp. 12055-12059 CrossRef
    19. Zhao, M, Wu, X, Cai, C (2009) J Phys Chem C 113: pp. 4987-4996 CrossRef
    20. Qian, K, Liu, HL, Yang, LB, Liu, JH (2012) J Nanoscale 4: pp. 6449-6454 CrossRef
    21. Wu, G, Chen, YS, Xu, BQ (2005) Electrochem Commun 7: pp. 1237-1243 CrossRef
    22. William, S, Hummers, JR, Offeman, RE (1958) J Am Chem Soc 80: pp. 1339 CrossRef
    23. Kovtyukhova, NI, Ollivier, PJ, Martin, BR, Mallouk, TE, Chizhik, SA, Buzaneva, EV, Gorchinskiy, AD (1999) Chem Mater 11: pp. 771-778 CrossRef
    24. Sun, L, Wang, L, Tian, CG, Tan, TX, Xie, Y, Shi, KY, Li, MT, Fu, HG (2012) RSC Adv 2: pp. 4498-4506 CrossRef
    25. Atta, NF, Galal, A, Khalifa, F (2007) Appl Surf Sci 253: pp. 4273-4282 CrossRef
    26. Jeong, HK, Lee, P, Lahaye, RJWE, Park, MH, An, KH, Kim, IJ, Yang, CW, Park, CY, Ruoff, RS, Lee, YH (2008) J Am Chem Soc 130: pp. 1362-1366 CrossRef
    27. Mo, Z, Zheng, R, Peng, H, Liang, HG, Liao, SJ (2014) J Power Sources 245: pp. 801-807 CrossRef
    28. Gong, KP, Du, F, Xia, ZH, Durstock, M, Dai, LM (2009) Science 323: pp. 760-764 CrossRef
    29. Li, W, Wu, HW, Chen, JM, Xue, HG, Kong, Y (2013) Synth Met 185鈥?86: pp. 56-60 CrossRef
    30. Hyeon, T, Han, S, Sung, YE, Park, KW, Kim, YW (2003) Angew Chem 115: pp. 4488-4492 CrossRef
    31. Guo, S, Dong, S, Wang, E, Wang, E (2009) ACS Nano 4: pp. 547-555 CrossRef
    32. Guo, S, Dong, S, Wang, E, Wang, E (2009) Small 5: pp. 1869-1876 CrossRef
    33. Hsin, YL, Hwang, KC, Yeh, CT (2007) J Am Chem Soc 129: pp. 9999-10010 CrossRef
    34. Xu, X, Zhou, Y, Yuan, T, Li, Y (2013) Electrochim Acta 112: pp. 587-595 CrossRef
    35. Wu, B, Hu, D, Kuang, Y, Kuang, Y, Yu, Y, Zhang, X, Chen, J (2011) Chem Commun 47: pp. 5253-5255 CrossRef
    36. Kashyout, AB, Nassr, A, Giorgi, L, Maiyalagan, T, Youssef, B (2011) Int J Electrochem Sci 6: pp. 379-393
    37. Bard AJ, Faulkner LR (1980) Electrochemical methods鈥攆undamentals and applications. New York
    38. Kabbabi, A, Faure, R, Durand, R, Beden, B, Hahn, F, Leger, JM, Lamy, C (1998) J Electroanal Chem 444: pp. 41-53 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
A novel Pt nanoflowers/polyaniline/nitrogen-doped graphene (PtNFs/PANI/NG) electrocatalyst was prepared by dispersing Pt nanoflowers (PtNFs) onto a polyaniline (PANI) grafted N-doped graphene (NG) matrix through a two-step electrochemical process. Firstly, NG was prepared by a hydrothermal reaction of graphene oxide (GO) with urea, and then electrochemical polymerization of aniline at NG was carried out. Secondly, PtNFs was dispersed onto the film of PANI/NG by electrochemical reduction of H2PtCl6. The as-prepared composites were characterized by SEM, XRD, and Raman spectra. Compared with PtNFs/PANI/G, PtNFs/PANI, and PtNFs/NG catalysts, the novel PtNFs/PANI/NG catalyst exhibits more advantages such as high catalytic activity, excellent poisoning tolerance, and stability characteristic towards methanol electro-oxidation, which is attributed to not only the good dispersion of PtNFs on PANI/NG but also the strong interactions between metal particles and conducting polymer matrixes. The results suggest that the PtNFs/PANI/NG catalyst can be a promising alternative for catalyst in direct methanol fuel cells (DMFCs). Graphical abstract A novel Pt nanoflowers/polyaniline/nitrogen-doped graphene (PtNFs/PANI/NG) composite was developed via electrochemical approach, in which NG cannot only exhibit excellent catalytic activity towards the oxygen reduction reaction and electric conductivity but also effectively improve the stability of PANI. The combination of NG and PANI can improve redox activity of ternary complex film and the successful deposition of Pt on the PANI/NG electrode to form a unique three-dimensional structure of PtNFs. Compared with pure Pt, the incorporation of Pt to the substrate matrices leads to a decrease in the amount of Pt used and an improvement of catalytic activity towards the oxidation of methanol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700