用户名: 密码: 验证码:
Metal-assisted chemical etching of silicon 3D nanostructure using direct-alternating electric field
详细信息    查看全文
  • 作者:Xiaodong Jiao ; Yan Chao ; Liqun Wu ; Anqi Yao
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:27
  • 期:2
  • 页码:1881-1887
  • 全文大小:946 KB
  • 参考文献:1.V. Schmidt, J.V. Wittemann, S. Senz, U. Goesele, Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21(25–26), 2681–2702 (2009)CrossRef
    2.F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1(4), 1711–1724 (2006)CrossRef
    3.M. Jeon, K. Kamisako, Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application. Mater. Lett. 63(9–10), 777–779 (2009)CrossRef
    4.C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol 3(1), 31–35 (2008)CrossRef
    5.Y. Xiang, W. Han, Y. Wang, Y. Zhang, Y. Fuhua, Fabrication of silicon crystal-facet-dependent nanostructures by electron-beam lithography. J. Semicond. 29(6), 1057–1061 (2008)
    6.Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23(2), 285–308 (2011)CrossRef
    7.Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, U. Gösele, Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. J. Phys. Chem. C 114(24), 10683–10690 (2010)CrossRef
    8.M. Zhang, K. Peng, X. Fan, J. Jie, R. Zhang, S. Lee, N. Wong, Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 112(12), 4444–4450 (2008)CrossRef
    9.H. Chen, H. Wang, X. Zhang, C. Lee, S. Lee, Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles. Nano Lett. 10(3), 864–868 (2010)CrossRef
    10.J. Cichoszewski, M. Reuter, F. Schwerdt, J.H. Werner, Role of catalyst concentration on metal assisted chemical etching of silicon. Electrochim. Acta 109, 333–339 (2013)CrossRef
    11.V.A. Sivakov, G. Broenstrup, B. Pecz, A. Berger, G.Z. Radnoczi, M. Krause, S.H. Christiansen, Realization of vertical and zigzag single crystalline silicon nanowire architectures. J. Phys. Chem. C 114(9), 3798–3803 (2010)CrossRef
    12.O.J. Hildreth, W. Lin, C.P. Wong, Effect of catalyst shape and etchant composition on etching direction in metal-assisted chemical etching of silicon to fabricate 3D nanostructures. ACS Nano 3(12), 4033–4042 (2009)CrossRef
    13.O.J. Hildreth, K. Rykaczewski, A.G. Fedorov, C.P. Wong, A DLVO model for catalyst motion in metal-assisted chemical etching based upon controlled out-of-plane rotational etching and force-displacement measurements. Nanoscale 5(3), 961–970 (2013)CrossRef
    14.C. Chartier, S. Bastide, C. Levy-Clement, Metal-assisted chemical etching of silicon in HF-H2O2. Electrochim. Acta 53(17), 5509–5516 (2008)CrossRef
    15.K. Liu, S. Qu, X. Zhang, Z. Wang, Anisotropic characteristics and morphological control of silicon nanowires fabricated by metal-assisted chemical etching. J. Mater. Sci. 48(4), 1755–1762 (2013)CrossRef
    16.W. Chern, K. Hsu, I.S. Chun, B.P. de Azeredo, N. Ahmed, K. Kim, J. Zuo, N. Fang, P. Ferreira, X. Li, Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays. Nano Lett. 10(5), 1582–1588 (2010)CrossRef
    17.Y. Hu, K. Peng, L. Liu, Z. Qiao, X. Huang, X. Wu, X. Meng, S. Lee, Continuous-flow mass production of silicon nanowires via substrate-enhanced metal-catalyzed electroless etching of silicon with dissolved oxygen as an oxidant. Sci. Rep. UK. 4(3667), 1–5 (2014)
    18.Y. Hu, K. Peng, Z. Qiao, X. Huang, F. Zhang, R. Sun, X. Meng, S. Lee, Metal-catalyzed electroless etching of silicon in Aerated HF/H2O vapor for facile fabrication of silicon nanostructures. Nano Lett. 14(8), 4212–4219 (2014)CrossRef
    19.L. Liu, K. Peng, Y. Hu, X. Wu, S. Lee, Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated hf solution. Adv. Mater. 26(9), 1410–1413 (2014)CrossRef
    20.K. Peng, A. Lu, R. Zhang, S. Lee, Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv. Funct. Mater. 18(19), 3026–3035 (2008)CrossRef
    21.A.I. Hochbaum, D. Gargas, Y.J. Hwang, P. Yang, Single crystalline mesoporous silicon nanowires. Nano Lett. 9(10), 3550–3554 (2009)CrossRef
    22.W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128(46), 14881–14888 (2006)CrossRef
    23.K. Rykaczewski, O.J. Hildreth, C.P. Wong, A.G. Fedorov, J.H.J. Scott, Guided three-dimensional catalyst folding during metal-assisted chemical etching of silicon. Nano Lett. 11(6), 2369–2374 (2011)CrossRef
    24.D. Shin, J.B. Park, Y. Kim, S.J. Kim, J. H. Kang, B. Lee, S. Cho, B.H. Hong, K.S. Novoselov, Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nat. Commun. 6(6068), 1–11 (2015)
    25.C. Yang, T. Dabros, D. Li, J. Czarnecki, J.H. Masliyah, Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method. J. Colloid Interface Sci. 243(1), 128–135 (2001)CrossRef
    26.M. Takahashi, ζ potential of microbubbles in aqueous solutions: electrical properties of the gas–water interface. J. Phys. Chem. B 109(46), 21858–21864 (2005)CrossRef
    27.S. Nakabayashi, R. Shinozaki, Y. Senda, H.Y. Yoshikawa, Hydrogen nanobubble at normal hydrogen electrode. J. Phys. Condens. Mat. 25(18400818), 4–12 (2013)
  • 作者单位:Xiaodong Jiao (1)
    Yan Chao (1)
    Liqun Wu (1)
    Anqi Yao (1)

    1. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1573-482X
文摘
Metal-assisted chemical etching (MaCE) of silicon (Si) is a well-used method for the fabrication of Si nanostructures. To simplify the control etching for the fabrication of Si 3D nanostructures, we developed a new method using direct-alternating electric field to control the etching direction. We examined the MaCE process in the electric field, and evaluated the effect of different electric field frequencies and ultrasonic ion bubbles on the production of Si nanostructures. The results demonstrate that electric fields can effectively control etching direction and can be used to fabricate Si 3D nanostructures. Optimization of the electric current density and electric field frequency range has been performed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700