用户名: 密码: 验证码:
Regulation Mechanism of Novel Thermomechanical Treatment on Microstructure and Properties in Al-Zn-Mg-Cu Alloy
详细信息    查看全文
  • 作者:Zhiguo Chen ; Jieke Ren ; Jishuai Zhang…
  • 关键词:Al ; Zn ; Mg ; Cu alloy ; corrosion resistance ; microstructure ; thermomechanical treatment
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:25
  • 期:2
  • 页码:359-364
  • 全文大小:1,429 KB
  • 参考文献:1.T. Marlaud, A. Deschamps, F. Bley, W. Lefebvrec, and B. Baroux, Influence of Alloy Composition and Heat Treatment on Precipitate Composition in Al-Zn-Mg-Cu Alloys, Acta Mater., 2010, 58(1), p 248–260CrossRef
    2.J.K. Park and A.J. Ardell, Effect of Retrogression and Reaging Treatments on the Microstructure of Al 7075-T65, Metall. Trans. A, 1984, 15, p 1531–1539CrossRef
    3.B. Cina, Reducing the Susceptibility of Alloys, Particularly Aluminium Alloys, to Stress Corrosion Cracking: U.S. Patent, 3856584. 1974-12-24.
    4.Y.P. Xiao, Q.L. Pan, W.B. Li, X.Y. Liu, and Y.B. He, Influence of Retrogression and Reaging Treatment on Corrosion Behaviour of an Al-Zn-Mg-Cu Alloy, Mater. Design, 2011, 32(4), p 2149–2156CrossRef
    5.F. Ostermann, Improved Fatigue Resistance of Al-Zn-Mg Alloys Through Thermomechanical Processing, Mater. Trans., 1971, 2(10), p 2897–2902
    6.M.T. Jahn and J. Luo, Tensile and Fatigue Properties of a Thermomechanically Treated 7475 Aluminium Alloy, J. Mater. Sci., 1988, 23(11), p 4115–4120CrossRef
    7.Ren Jie-ke, Chen Zhi-guo, Huang Yu-jin, and Zhang Ji-shuai, Effect of New Thermomechanical Treatment on Microstructure and Properties of 2E12 Aluminum Alloy, Chin. J. Nonferrous Met., 2014, 24(3), p 643–650 ((in Chinese))
    8.D. Wang and Z.Y. Ma, Effect of Prestrain on Microstructure and Stress Corrosion Cracking of Overaged 7050 Aluminum Alloy, J. Alloys Compd., 2009, 469(1/2), p 445–450CrossRef
    9.N.M. Han, X.M. Zhang, S.D. Liu, and B. Ke, Effects of Prestretching and Ageing on the Strength and Fracture Toughness of Aluminum Alloy 7050, Mater. Sci. Eng. A, 2011, 528(10/11), p 3714–3721CrossRef
    10.Liu Ji-hua, Li Di, and Liu Pei-ying, Effect of Ageing and Retrogression Treatments on Mechanical and Corrosion Properties of 7075 Aluminum Alloy, Trans. Mater. Heat Treat., 2002, 23(1), p 50–53
    11.R. Ayer, J.Y. Koo, J.W. Steeds, and B.K. Park, Microanalytical Study of the Heterogeneous Phases in Commercial Al-Zn-Mg-Cu Alloys, Metall. Trans. A, 1985, 16(A), p 1925–1936CrossRef
    12.F. Andreatta, H. Terryn, and J.H.W. de Wit, Effect of Solution Heat Treatment on Galvanic Coupling Between Intermetallics and Matrix in AA7075-T6, Corros. Sci., 2003, 45(8), p 1733–1746CrossRef
    13.L.P. Huang, K.H. Chen, S. Li, and M. Song, Influence of High-Temperature Pre-precipitation on Local Corrosion Behaviors of Al-Zn-Mg Alloy, Scr. Mater., 2007, 56(4), p 305–308CrossRef
    14.M. Dixit, R.S. Mishra, and K.K. Sankaran, Structure-Property Correlations in Al 7050 and Al 7055 High-Strength Aluminum Alloys, Mater. Sci. Eng. A, 2008, 478(1-2), p 163–172CrossRef
    15.Y. Reda, R. Abdel-Karim, and I. Elmahallawi, Improvements in Mechanical and Stress Corrosion Cracking Properties in Al-Alloy 7075 Via Retrogression and Reaging, Mater. Sci. Eng. A, 2008, 485(1-2), p 468–475CrossRef
    16.G. Waterloo, V. Hansen, J. Gjønnes, and S.R. Skjervold, Effect of Pre-deformation and Pre-aging at Room Temperature in Al-Zn-Mg-(Cu, Zr) Alloys, Mater. Sci. Eng. A, 2001, 303(1), p 226–233CrossRef
    17.N. Birbilis, M.K. Cavanaugh, and R.G. Buchheit, Electrochemical Behavior and Localized Corrosion Associated with Al7Cu2Fe Particles in Aluminum Alloy 7075-T651, Corros. Sci., 2006, 48(12), p 4202–4215CrossRef
    18.N. Enung and P. Sunara, Improvement of Stress Corrosion Resistance in Aluminum Alloy 7075 through Retrogression and Re-aging Modification, Adv. Mater. Res., 2013, 789, p 467–475CrossRef
    19.G. Peng, K. Chen, S. Chen, and H. Fang, Influence of Repetitious-RRA Treatment on the Strength and SCC Resistance of Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2011, 528(12), p 4014–4018CrossRef
    20.J.F. Li, Z.W. Peng, C.X. Li, Z.Q. Jia, W.J. Chen, and Z.Q. Zheng, Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminium Alloy with Various Aging Treatments, Trans. Nonferrous Met. Soc. China, 2008, 18(4), p 755–762CrossRef
    21.U.J. Gang, S.H. Lee, and W.J. Nam, The evolution of Microstructure and Mechanical Properties of a 5052 Aluminium Alloy by the Application of Cryogenic Rolling and Warm Rolling, Mater. Trans., 2009, 50(1), p 82–86CrossRef
    22.P. Nageswara rao and R. Jayaganthan, Effects of Warm Rolling and Ageing After Cryogenic Rolling on Mechanical Properties and Microstructure of Al 6061 Alloy, Mater. Des., 2012, 39, p 226–233CrossRef
  • 作者单位:Zhiguo Chen (1) (2) (3)
    Jieke Ren (1) (2)
    Jishuai Zhang (1) (2)
    Jiqiang Chen (1) (2)
    Liang Fang (1) (2)

    1. School of Materials Science and Engineering, Central South University, Changsha, 410083, People’s Republic of China
    2. Light Alloy Research Institute, Central South University, Changsha, 410083, People’s Republic of China
    3. Department of Mechanical and Electrical Engineering, Hunan University of Humanities, Science and Technology, Loudi, 417000, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
Scanning electron microscopy, transmission electron microscopy, tensile test, exfoliation corrosion test, and slow strain rate tensile test were applied to investigate the properties and microstructure of Al-Zn-Mg-Cu alloy processed by final thermomechanical treatment, retrogression reaging, and novel thermomechanical treatment (a combination of retrogression reaging with cold or warm rolling). The results indicate that in comparison with conventional heat treatment, the novel thermomechanical treatment reduces the stress corrosion susceptibility. A good combination of mechanical properties, stress corrosion resistance, and exfoliation corrosion resistance can be obtained by combining retrogression reaging with warm rolling. The mechanism of the novel thermomechanical treatment is the synergistic effect of composite microstructure such as grain morphology, dislocation substructures, as well as the morphology and distribution of primary phases and precipitations. Keywords Al-Zn-Mg-Cu alloy corrosion resistance microstructure thermomechanical treatment

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700