用户名: 密码: 验证码:
Mathematical method in optical molecular imaging
详细信息    查看全文
  • 作者:ChengCai Leng (1) (2)
    Jie Tian (2)

    1. School of Mathematics and Information Sciences
    ; Nanchang Hangkong University ; Nanchang ; 330063 ; China
    2. Key Laboratory of Molecular Imaging
    ; Institute of Automation ; Chinese Academy of Sciences ; Beijing ; 100190 ; China
  • 关键词:radiative transfer equation (RTE) ; regularization method ; source reconstruction ; optical molecular imaging ; mathematical method ; 杈愬皠浼犺緭鏂圭▼ ; 姝e垯鍖栨柟娉?/li> 鍏夋簮閲嶅缓 ; 鍏夊鍒嗗瓙褰卞儚 ; 鏁板鏂规硶 ; 031101
  • 刊名:SCIENCE CHINA Information Sciences
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:58
  • 期:3
  • 页码:1-13
  • 全文大小:697 KB
  • 参考文献:1. Weissleder R, Pittet M J. Imaging in the era of molecular oncology. Nature, 2008, 452: 580鈥?89 CrossRef
    2. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med, 2003, 9: 123鈥?28 CrossRef
    3. Tian J. Molecular Imaging: Fundamentals and Application. Hangzhou: Zhejiang University Press, 2012
    4. Weissleder R, Mahmood U. Molecular imaging. Radiology, 2001, 219: 316鈥?33 CrossRef
    5. Mssound T F, Gambhir S S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Gene Dev, 2003, 17: 545鈥?80 CrossRef
    6. Cherry S R. / In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol, 2004, 49: R13鈥揜48 CrossRef
    7. Ntziachristos V, Ripoll J, Wang L V, et al. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol, 2005, 23: 313鈥?20 CrossRef
    8. Weissleder R. Molecular imaging in cancer. Science, 2006, 312: 1168鈥?171 CrossRef
    9. Willmann J K, van Bruggen N, Dinkelborg L M, et al. Molecular imaging in drug development. Nat Rev Drug Discov, 2008, 7: 591鈥?07 CrossRef
    10. Lv Y J. Research of inverse problems in bioluminescence tomography (in Chinese). Dissertation for the Doctoral Degree. Beijing: Institute of Automation, Chinese Academy of Sciences, 2007
    11. Arridge S R, Hebden J C. Optical imaging in medicine: II. Modelling and reconstruction. Phys Med Biol, 1997, 42: 841鈥?53 CrossRef
    12. Gibson A P, Hebden J C, Arridge S R. Recent advances in diffuse optical imaging. Phys Med Biol, 2005, 50: R1鈥揜43 CrossRef
    13. Harrach B. On uniqueness in diffuse optical tomography. Inverse Probl, 2009, 25: 055010 CrossRef
    14. Boas D A, Brooks D H, Miller E L, et al. Imaging the body with diffuse optical tomography. IEEE Signal Proc Mag, 2001, 18: 57鈥?5 CrossRef
    15. Arridge S R, Schotland J C. Optical tomography: forward and inverse problems. Inverse Probl, 2009, 25: 123010 CrossRef
    16. Contag C H, Bachmann M H. Advances in / in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng, 2002, 4: 235鈥?60 CrossRef
    17. Wang G, Hoffman E A, McLennan G, et al. Development of the first bioluminescent CT scanner. Radiology, 2003, 229: 566
    18. Wang G, Shen H O, Cong W X, et al. Temperature-modulated bioluminescence tomography. Opt Express, 2006, 14: 7852鈥?871 CrossRef
    19. Wang G, Cong W X, Durairaj K, et al. / In vivo mouse studies with bioluminescence tomography. Opt Express, 2006, 14: 7801鈥?809 CrossRef
    20. Cong W X, Wang G, Kumar D, et al. Practical reconstruction method for bioluminescence tomography. Opt Express, 2005, 13: 6756鈥?771 CrossRef
    21. Wang G, Li Y, Jiang M. Uniqueness theorems in bioluminescence tomography. Med Phys, 2004, 31: 2289鈥?299 CrossRef
    22. Jiang M, Zhou T, Cheng J T, et al. Image reconstruction for bioluminescence tomography from partial measurement. Opt Express, 2007, 15: 11095鈥?1116 CrossRef
    23. Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable / in vivo molecular imaging. Eur Radiol, 2003, 13: 195鈥?08
    24. Ntziachristos V, Tung C H, Bremer C, et al. Fluorescence molecular tomography resolves protease activity / in vivo. Nat Med, 2002, 8: 757鈥?60 CrossRef
    25. Ntziachristos V, Schellenberger E A, Ripoll J, et al. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Nat Acad Sci, 2004, 101: 12294鈥?2299 CrossRef
    26. Deliolanis N, Lasser T, Hyde D, et al. Free-space fluorescence molecular tomography utilizing 360掳 geometry projections. Opt Lett, 2007, 32: 382鈥?84 CrossRef
    27. Tan Y, Jiang H. DOT guided fluorescence molecular tomography of arbitrarily shaped objects. Med Phys, 2008, 35: 5703鈥?707 CrossRef
    28. Zhang B, Liu S Q, Cao X, et al. Fluorescence tomography reconstruction with simultaneous positron emission tomography priors. IEEE Trans Multimedia, 2013, 15: 1031鈥?038 CrossRef
    29. Robertson R, Germanos M S, Li C, et al. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol, 2009, 54: N355鈥揘365 CrossRef
    30. Li C Q, Mitchell G S, Cherry S R. Cerenkov luminescence tomography for small-animal imaging. Opt Lett, 2010, 35: 1109鈥?111 CrossRef
    31. Hu Z H, Liang J M, Yang W D, et al. Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Opt Express, 2010, 18: 24441鈥?4450 CrossRef
    32. Spinelli A E, D鈥橝mbrosio D, Calderan L, et al. Cerenkov radiation allows / in vivo optical imaging of positron emitting radiotracers. Phys Med Biol, 2010, 55: 483鈥?95 CrossRef
    33. Ruggiero A, Holland J P, Lewis J S, et al. Cerenkov luminescence imaging of medical isotopes. J Nucl Med, 2010, 51: 1123鈥?130 CrossRef
    34. Xu Y D, Chang E, Liu H G, et al. Proof-of-concept study of monitoring cancer drug therapy with Cerenkov luminescence imaging. J Nucl Med, 2012, 53: 312鈥?17 CrossRef
    35. Klose A D, Ntziachristos V, Hielscher A. The inverse source problem based on the radiative transfer equation in optical molecular imaging. J Comput Phys, 2005, 202: 323鈥?45 CrossRef
    36. Wang L V, Wu H I. Biomedical Optics: Principles and Imaging. Wiley-Interscience, 2007
    37. Rice B W, Cable M D, Nelson M B. / In vivo imaging of light-emitting probes. J Biomed Opt, 2001, 6: 432鈥?40 CrossRef
    38. Chandrasekhar S. Radiative Transfer. Oxford: Clarendon Press, 1950
    39. Born M, Wolf E. Principals of Optics. 7th ed. Cambridge: Cambridge University Press, 1999 CrossRef
    40. Qin C H. Research of bioluminescence tomography based on meshless method and construction of BLT prototype system (in Chinese). Dissertation for the Doctoral Degree. Beijing: Institute of Automation, Chinese Academy of Sciences, 2009
    41. Ishimaru A. Wave Propagation and Scattering in Random Media. New York: IEEE Press, 1977
    42. Toublanc D. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations. Appl Optics, 1996, 35: 3270鈥?274 CrossRef
    43. Schweiger M, Arridge S R, Hiraoka M, et al. The finite element method for the propagation of light in scattering media: boundary and source conditions. Med Phys, 1995, 22: 1779鈥?792 CrossRef
    44. Wang L V, Jacques S L, Zheng L Q. MCML-Monte Carlo modeling of light transport in multi-layered tissues. Comput Meth Prog Bio, 1995, 47: 131鈥?46 CrossRef
    45. Boas D, Culver J, Stott J, et al. Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt Express, 2002, 10: 159鈥?70 CrossRef
    46. Li H, Tian J, Zhu F, et al. A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method. Acad Radiol, 2004, 11: 1029鈥?038 CrossRef
    47. Ren N N, Liang J M, Qu X C, et al. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Opt Express, 2010, 18: 6811鈥?823 CrossRef
    48. Gu X J, Xu Y, Jiang H B. Mesh-based enhancement schemes in diffuse optical tomography. Med Phys, 2003, 30: 861鈥?69 CrossRef
    49. Culver J P, Choe R, Holboke M J, et al. Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med Phys, 2003, 30: 235鈥?47 CrossRef
    50. Qin C H, Tian J, Yang X, et al. Galerkin-based meshless methods for photon transport in the biological tissue. Opt Express, 2008, 16: 20317鈥?0333 CrossRef
    51. Lv Y J, Tian J, Cong W X, et al. A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt Express, 2006, 14: 8211鈥?223 CrossRef
    52. Razansky D, Ntziachristos V. Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion. Med Phys, 2007, 34: 4293鈥?301 CrossRef
    53. Wang D F, Liu X, Chen Y P, et al. A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media. IEEE Trans Inf Technol Biomed, 2009, 13: 766鈥?73 CrossRef
    54. Zhong J H, Tian J, Yang X, et al. Whole-body Cerenkov luminescence tomography with the finite element SP3 method. Ann Biomed Eng, 2011, 39: 1728鈥?735 CrossRef
    55. Qin C H, Tian J, Lv Y J, et al. Three-dimensional bioluminescent source reconstruction method based on nodes of adaptive FEM. In: Proceedings of SPIE 6916, Progress in Biomedical Optics and Imaging. San Diego: SPIE, 2008. 69161K
    56. Tian J, Bai J, Yan X P, et al. Multimodality molecular imaging. IEEE Eng Med Biol, 2008, 27: 48鈥?7 CrossRef
    57. Cong A X, Wang G. Multispectral bioluminescence tomography: methodology and simulation. Int J Biomed Imag, 2006, 2006: 57614 CrossRef
    58. Dehghani H, Davis S C, Pogue B W. Spectrally resolved bioluminescence tomography using the reciprocity approach. Med Phys, 2008, 35: 4863鈥?871 CrossRef
    59. Gong R F, Wang G, Cheng X L, et al. A novel approach for studies of multispectral bioluminescence tomography. Numer Math, 2010, 115: 553鈥?83 CrossRef
    60. Lv Y J, Tian J, Cong W X, et al. Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation. Phys Med Biol, 2007, 52: 4497鈥?512 CrossRef
    61. Svenmarker P, Xu C T, Liu H C, et al. Multispectral guided fluorescence diffuse optical tomography using upconverting nanoparticles. Appl Phys Lett, 2014, 104: 073703 CrossRef
    62. Feng J C, Jia K B, Yan G R, et al. An optimal permissible source region strategy for multispectral bioluminescence tomography. Opt Express, 2008, 16: 15640鈥?5654 CrossRef
    63. Naser M A, Patterson M S. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties. Biomed Opt Express, 2010, 1: 512鈥?26 CrossRef
    64. Qin C H, Zhu S P, Feng J C, et al. Comparison of permissible source region and multispectral data using efficient bioluminescence tomography method. J Biophoton, 2011, 4: 824鈥?39 CrossRef
    65. Naser M A, Patterson M S. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region. Biomed Opt Express, 2011, 2: 168鈥?84
    66. Lu Y, Machado H B, Douraghy A, et al. Experimental bioluminescence tomography with fully parallel radiativetransfer-based reconstruction framework. Opt Express, 2009, 17: 16681鈥?6695 CrossRef
    67. Guo W, Jia K B, Zhang Q, et al. Sparse reconstruction for bioluminescence tomography based on the semigreedy method. Comput Math Method Med, 2012, 2012: 494808 CrossRef
    68. Xu Z, Bai J. Analysis of finite-element-based methods for reducing the ill-posedness in the reconstruction of fluorescence molecular tomography. Prog Nat Sci, 2009, 19: 501鈥?09 CrossRef
    69. Han R Q, Liang J M, Qu X C, et al. A source reconstruction algorithm based on adaptive / hp-FEM for bioluminescence tomography. Opt Express, 2009, 17: 14481鈥?4494 CrossRef
    70. Guo H B, Hou Y Q, He XW. Adaptive / hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation. J Innov Opt Heal Sci, 2014, 7: 1350057 CrossRef
    71. Lv Y J, Tian J, Cong W X, et al. A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt Express, 2006, 14: 8211鈥?223 CrossRef
    72. Yu J J, He X W, Geng G H, et al. Hybrid multilevel sparse reconstruction for a whole domain bioluminescence tomography using adaptive finite element. Comput Math Method Med, 2013, 2013: 548491
    73. Zhang B, Yang X, Qin C H, et al. A trust region method in adaptive finite element framework for bioluminescence tomography. Opt Express, 2010, 18: 6477鈥?491 CrossRef
    74. He X W, Hou Y B, Chen D F, et al. Sparse regularization-based reconstruction for bioluminescence tomography using a multilevel adaptive finite element method. Int J Biomed Imag, 2011, 2011: 203537 CrossRef
    75. Tikhonov A N, Aresenin V Y. Solutions of ill-posed Problems. Washington DC: V. H. Winston and Sons, 1977
    76. Cao N, Nehorai A, Jacobs M. Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization. Opt Express, 2007, 15: 13695鈥?3708 CrossRef
    77. Gao H, Zhao H K. Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization. Opt Express, 2010, 18: 1854鈥?871 CrossRef
    78. Zeng J S, Fang J, Xu Z B. Sparse SAR imaging based on / L 1/2 regularization. Sci China Inf Sci, 2012, 55: 1755鈥?775 CrossRef
    79. Donoho D L. Compressed sensing. IEEE Trans Inf Theory, 2006, 52: 1289鈥?306 CrossRef
    80. Yu J J, Liu F, Wu J, et al. Fast source reconstruction for bioluminescence tomography based on sparse regularization. IEEE Trans Biomed Eng, 2010, 57: 2583鈥?586 CrossRef
    81. Zhong J H, Tian J, Yang X, et al. / L 1-regularized Cerenkov luminescence tomography with a / SP 3 method and CT fusion. In: Proceedings of the Annual International Conference of the Engineering in Medicine and Biology Society. Boston: IEEE, 2011. 6158鈥?161
    82. Zhang Q T, Chen X L, Xu X C, et al. Comparative studies of / l p-regularization-based reconstruction algorithms for bioluminescence tomography. Biomed Opt Express, 2012, 3: 2816鈥?836
    83. Yi H J, Chen D F, Li W, et al. Reconstruction algorithms based on / l 1-norm and / l 2-norm for two imaging models of fluorescence molecular tomography: a comparative study. J Biomed Opt, 2013, 18: 56013 CrossRef
    84. Cao X, Zhang B, Wang X, et al. An adaptive Tikhonov regularization method for fluorescence molecular tomography. Med Biol Eng Comput, 2013, 51: 849鈥?58 CrossRef
    85. Shi J W, Liu F, Zhang G L, et al. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm. J Biomed Opt, 2014, 19: 046018 CrossRef
    86. Ye J Z, Chi C W, Xue Z W, et al. Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method. Biomed Opt Express, 2014, 5: 387鈥?06 CrossRef
    87. Zhu D W, Li C Q. Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement. Phys Med Biol, 2014, 59: 2901鈥?912 CrossRef
    88. Feng J C, Qin C H, Jia K B, et al. Total variation regularization for bioluminescence tomography with the split Bregman method. Appl Optics, 2012, 51: 4501鈥?512 CrossRef
    89. Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys D, 1992, 60: 259鈥?68 CrossRef
    90. Zhu Y G, Shi Y Y. A fast method for reconstruction of total-variation MR images with a periodic boundary condition. IEEE Signal Proc Lett, 2013, 20: 291鈥?94 CrossRef
    91. Yao L, Jiang H B. Enhancing finite element-based photoacoustic tomography using total variation minimization. Appl Optics, 2011, 50: 5031鈥?041 CrossRef
    92. Gao H, Zhao H K. Multilevel bioluminescence tomography based on radiative transfer equation. Part 2: total variation and l1 data fidelity. Opt Express, 2010, 18: 2894鈥?912 CrossRef
    93. Dutta J, Ahn S, Li C Q, et al. Joint / L 1 and total variation regularization for fluorescence molecular tomography. Phys Med Biol, 2012, 57: 1459鈥?476 CrossRef
    94. Jin W M, He Y H. Iterative reconstruction for bioluminescence tomography with total variation regularization. In: Proceedings of SPIE 8553, Optics in Heath Care and Biomedical Optics V. Beijing: SPIE, 2012. 855333
    95. Cabello J, Torres-Espallardo I, Gillam J E, et al. PET reconstruction from truncated projections using total-variation regularization for hadron therapy monitoring. IEEE Trans Nucl Sci, 2013, 60: 3364鈥?372 CrossRef
    96. Schweiger M, Arridge S R, Nissil盲 I. Gauss-Newton method for reconstruction in diffusion optical tomography.Phys Med Biol, 2005, 50: 2365鈥?386 CrossRef
    97. He X W, Liang J M, Wang X R, et al. Sparse regularization for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method. Opt Express, 2010, 18: 24825鈥?4841 CrossRef
    98. Freiberger M, Clason C, Scharfetter H. Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach. Appl Optics, 2010, 49: 3741鈥?747 CrossRef
    99. Zhang Q T, Zhao H, Chen D F, et al. Source sparsity based primal-dual interior-point method for three-dimensional bioluminescence tomography. Opt Commun, 2011, 284: 5871鈥?876 CrossRef
    100. Han D, Tian J, Zhu S P, et al. A fast reconstruction for fluorescence molecular tomography with sparsity regularization. Opt Express, 2010, 18: 8630鈥?646 CrossRef
    101. Wu P, Liu K, Zhang Q, et al. Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid opitcal/microcomputed in tomography imaging. J Biomed Opt, 2012, 17: 126012 CrossRef
    102. Goldstein T, Osher S. The Split Bregman method for L1 regularized problems. SIAM J Imag Sci, 2009, 2: 323鈥?43 CrossRef
    103. Abascal J F, Chamorro-Servent J, Aguirre J, et al. Fluorescence diffuse optical tomography using the split Bregman method. Med Phys, 2011, 38: 6275鈥?284 CrossRef
    104. Zhang H, Cheng L Z, Li J P. Reweighted minimization model for MR image reconstruction with split Bregman method. Sci China Inf Sci, 2012, 55: 2109鈥?118 CrossRef
    105. Nikazad T, Davidi R, Herman G T. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction. Inverse Probl, 2012, 28: 035005 CrossRef
    106. Ding X T, Wang K, Jie B, et al. Probability method for Cerenkov luminescence tomography based on conformance error minimization. Biomed Opt Express, 2014, 5: 2091鈥?112 CrossRef
  • 刊物类别:Computer Science
  • 刊物主题:Chinese Library of Science
    Information Systems and Communication Service
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1919
文摘
Optical molecular imaging is an important technique of studies at molecular level and provides promising tools to non-invasively delineate in vivo physiological and pathological activities at cellular and molecular levels, and it has been widely used for diagnosing, managing diseases, metastasis detection and drug development. From a mathematical perspective, this paper mainly focuses on the forward problem and inverse problem in biological tissues based on the radiative transfer equation (RTE). The forward problem is accustomed to describing photon propagation in biological tissues and the inverse problem is used to reconstruct internal source distribution from the signal detected on the external surface. We also introduce the detailed derivation of the RTE and Robin boundary condition and discretization of the forward problem, along with the reconstruction methods and iterative solution algorithms summarized for the inverse problem. Finally, the current and future challenges of optical molecular imaging are discussed. This survey aims to construct a mathematical method, a state-of-the-art framework for optical molecular imaging, from which future research may benefit.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700