用户名: 密码: 验证码:
Electrochemical performance of LiMnPO4 by Fe and Zn co-doping for lithium-ion batteries
详细信息    查看全文
  • 作者:Huihua Yi ; Chenglin Hu ; Xiangming He ; Hongyun Xu
  • 关键词:Lithium ; ion batteries ; Lithium manganese phosphate ; Cathode ; Doping ; Magnesium dissolution
  • 刊名:Ionics
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:21
  • 期:3
  • 页码:667-671
  • 全文大小:929 KB
  • 参考文献:1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable Lithium batteries. J Electrochem Soc 144(4):1188-1194. doi: 10.1149/1.1837571 CrossRef
    2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652-657. doi: 10.1038/451652a CrossRef
    3. Aravindan V, Gnanaraj J, Lee Y, Madhavi S (2013) LiMnPO4 - A next generation cathode material for lithium-ion batteries. J Mater Chem A 1(11):3518-3539. doi: 10.1039/C2TA01393B CrossRef
    4. Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) Olivine-type cathodes:Achievements and problems. J Power Sources 119-121:232-238. doi: 10.1016/S0378-7753(03)00239-8
    5. Saravanan K, Ramar V, Balaya P, Vittal JJ (2011) Li(Mn / x Fe1 / -x )PO4/C ( / x = 0.5, 0.75 and 1) nanoplates for lithium storage application. J Mater Chem 21(38):14925-14935. doi: 10.1039/C1JM11541C CrossRef
    6. Li GH, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for lithium batteries. Electrochem Solid-State Lett 5(6):A135-A137. doi: 10.1149/1.1475195 CrossRef
    7. Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche JB, Morcrette M, Tarascon JM, Masquelier C (2005) Toward understanding of electrical limitations (Electronic, Ionic) in LiMPO (M = Fe, Mn) electrode materials. J Electrochem Soc 152(5):A913-A921. doi: 10.1149/1.1884787 CrossRef
    8. Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO as an advanced cathode material for rechargeable lithium batteries. JElectrochem Soc 156(7):A541-A552. doi: 10.1149/1.3125765
    9. Oh SM, Oh SW, Yoon CS, Scrosati B, Amine K, Sun YK (2010) High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20(19):3260-3265. doi:10.1002/adfm.201000469 CrossRef
    10. Li BZ, Wang Y, Xue L, Li XP, Li WS (2013) Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery. J Power Sources 232:12-16. doi: 10.1016/j.jpowsour.2013.01.019 CrossRef
    11. Drezen T, Kwon N, Bowen P, Teerlinck I, Isono M, Exnar I (2007) Effect of particle size on LiMnPO4 cathodes. J Power Sources 174(2):949-953. doi: 10.1016/j.jpowsour.2007.06.203 CrossRef
    12. Choi D, Wang D, Bae I, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang J, Graff GL, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-Ion battery cathode. Nano Lett 10(8):2799-2805. doi: 10.1021/nl1007085 CrossRef
    13. Dinh H, Mho S, Kang Y, Yeo I (2013) Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes. J Power Sources 244:189-195. doi: 10.1016/j.jpowsour.2013.01.191 CrossRef
    14. Cao Y, Duan J, Hu G, Jiang F, Peng Z, Du K, Guo H (2013) Synth
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
To study the effect of Fe and/or Zn doping on the performance of LiMnPO4, LiMn0.9Fe0.1?em class="a-plus-plus">x Zn x PO4/C (x--, 0.05, and 0.1) composites were synthesized by a solid-state process. They are all single phase with olivine structure but LiMn0.9(FeZn)0.05PO4/C reveals a different morphology. The Fe-Zn co-doping remarkably enhances the performance of LiMnPO4 due to the presence of Fe and Zn in olivine framework resulting in the decrease of charge transfer resistance and Mn ion dissolution. Compared with LiMn0.9Fe0.1PO4/C and LiMn0.9Zn0.1PO4/C, LiMn0.9(FeZn)0.05PO4/C exhibits much higher discharge capacity and better rate capability. It delivers the capacities of 151.3?mAh?g? at 0.1?C and 128.4?mAh?g? at 1?C and retains 96.7?% of the initial capacity after 100?cycles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700