用户名: 密码: 验证码:
Mirror-twin induced bicrystalline InAs nanoleaves
详细信息    查看全文
  • 作者:Mun Teng Soo ; Kun Zheng ; Qiang Gao ; Hark Hoe Tan ; Chennupati Jagadish
  • 关键词:InAs ; nanoleaf ; twin boundary ; mirror twin
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:766-773
  • 全文大小:1,856 KB
  • 参考文献:[1]Bierman, M. J.; Lau, Y. K. A.; Kvit, A. V.; Schmitt, A. L.; Jin, S. Dislocation-driven nanowire growth and eshelby twist. Science 2008, 320, 1060–1063.CrossRef
    [2]Vincent, J. F. V.; Bogatyreva, O. A.; Bogatyrev, N. R.; Bowyer, A.; Pahl, A.-K. Biomimetics: Its practice and theory. J. R. Soc. Interface 2006, 3, 471–482.
    [3]Han, B.; Huang, Y. L.; Li, R. P.; Peng, Q.; Luo, J. Y.; Pei, K.; Herczynski, A.; Kempa, K.; Ren, Z. F.; Gao, J. W. Bio-inspired networks for optoelectronic applications. Nat. Commun. 2014, 5, 5674.
    [4]Buhl, K.; Roth, Z.; Srinivasan, P.; Rumpf, R.; Johnson, E. Biologically inspired optics: Analog semiconductor model of the beetle exoskeleton. In Proc. SPIE 7057, The Nature of Light: Light in Nature II, San Diego, California, USA, 2008, pp 705707.CrossRef
    [5]Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.CrossRef
    [6]Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K.-H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317.CrossRef
    [7]Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302, 1377–1379.CrossRef
    [8]Parkinson, P.; Lloyd-Hughes, J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Johnston, M. B.; Herz, L. M. Transient terahertz conductivity of GaAs nanowires. Nano Lett. 2007, 7, 2162–2165.CrossRef
    [9]Joyce, H. J.; Gao, Q.; Hoe Tan, H.; Jagadish, C.; Kim, Y.; Zou, J.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Parkinson, P. et al. III–V semiconductor nanowires for optoelectronic device applications. Prog. Quant. Electron. 2011, 35, 23–75.
    [10]Xia, H.; Lu, Z.-Y.; Li, T.-X.; Parkinson, P.; Liao, Z.-M.; Liu, F.-H.; Lu, W.; Hu, W.-D.; Chen, P.-P.; Xu, H.-Y. et al. Distinct photocurrent response of individual GaAs nanowires induced by n-type doping. ACS Nano 2012, 6, 6005–6013.CrossRef
    [11]Saxena, D.; Mokkapati, S.; Parkinson, P.; Jiang, N.; Gao, Q.; Tan, H. H.; Jagadish, C. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photon. 2013, 7, 963–968.CrossRef
    [12]Chau, R.; Doyle, B.; Datta, S.; Kavalieros, J.; Zhang, K. Integrated nanoelectronics for the future. Nat. Mater. 2007, 6, 810–812.
    [13]Milnes, A. G.; Polyakov, A. Y. Indium arsenide: A semiconductor for high speed and electro-optical devices. Mat. Sci. Eng. B-Solid 1993, 18, 237–259.CrossRef
    [14]Dayeh, S. A.; Aplin, D. P. R.; Zhou, X. T.; Yu, P. K. L.; Yu, E. T.; Wang, D. L. High electron mobility InAs nanowire field-effect transistors. Small 2007, 3, 326–332.CrossRef
    [15]Björk, M. T.; Ohlsson, B. J.; Thelander, C.; Persson, A. I.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. Nanowire resonant tunneling diodes. Appl. Phys. Lett. 2002, 81, 4458–4460.
    [16]Miao, J. S.; Hu, W. D.; Guo, N.; Lu, Z. Y.; Zou, X. M.; Liao, L.; Shi, S. X.; Chen, P. P.; Fan, Z. Y.; Ho, J. C. et al. Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano 2014, 8, 3628–3635.CrossRef
    [17]Doh, Y.-J.; van Dam, J. A.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; De Franceschi, S. Tunable supercurrent through semiconductor nanowires. Science 2005, 309, 272–275.CrossRef
    [18]Zhang, C.-Z.; Gao, H.; Zhang, D.; Zhang, X.-T. Local homoepitaxial growth and optical properties of ZnO polar nanoleaves. Chin. Phys. Lett. 2008, 25, 302–305.
    [19]Yang, Y.; Liao, Q. L.; Qi, J. J.; Guo, W.; Zhang, Y. Synthesis and transverse electromechanical characterization of single crystalline ZnO nanoleaves. Phys. Chem. Chem. Phys. 2010, 12, 552–555.
    [20]Xu, H. L.; Wang, W. Z.; Zhu, W.; Zhou, L.; Ruan, M. L. Hierarchical-oriented attachment: From one-dimensional Cu(OH)2 nanowires to two-dimensional CuO nanoleaves. Cryst. Growth Des. 2007, 7, 2720–2724.CrossRef
    [21]Xu, X. D.; Zhang, M.; Feng, J.; Zhang, M. L. Shapecontrolled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid. Mater. Lett. 2008, 62, 2787–2790.
    [22]He, Y. J.; Peng, J. F.; Chu, W.; Li, Y. Z.; Tong, D. G. Black mesoporous anatase TiO2 nanoleaves: A high capacity and high rate anode for aqueous Al-ion batteries. J. Mater. Chem. A 2014, 2, 1721–1731.
    [23]Samanta, P. K.; Basak, S.; Chaudhuri, P. R. Fern leaves: The secret life of zinc oxide. Mater. Today 2011, 14, 295.
    [24]Martelli, F.; Piccin, M.; Bais, G.; Jabeen, F.; Ambrosini, S.; Rubini, S.; Franciosi, A. Photoluminescence of Mn-catalyzed GaAs nanowires grown by molecular beam epitaxy. Nanotechnology 2007, 18, 125603.CrossRef
    [25]Li, J. Y.; Liu, J.; Wang, L.-S.; Chang, R. P. H. Physical and electrical properties of chemical vapor grown GaN nano/ microstructures. Inorg. Chem. 2008, 47, 10325–10329.
    [26]Di Giacomo, E.; Iannelli, M.; Frugis, G. TALE and shape: How to make a leaf different. Plants 2013, 2, 317–342.CrossRef
    [27]Nakata, M.; Okada, K. The leaf adaxial-abaxial boundary and lamina growth. Plants 2013, 2, 174–202.CrossRef
    [28]Tsiantis, M.; Langdale, J. A. The formation of leaves. Curr. Opin. Plant Biol. 1998, 1, 43–48.
    [29]Hiruma, K.; Yazawa, M.; Katsuyama, T.; Ogawa, K.; Haraguchi, K.; Koguchi, M.; Kakibayashi, H. Growth and optical properties of nanometerscale GaAs and InAs whiskers. J. Appl. Phys. 1995, 77, 447–462.
    [30]Dick, K. A.; Deppert, K.; Mårtensson, T.; Mandl, B.; Samuelson, L.; Seifert, W. Failure of the vapor−liquid−solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 2005, 5, 761–764.CrossRef
    [31]Dayeh, S. A.; Yu, E. T.; Wang, D. L. III−V nanowire growth mechanism: V/III ratio and temperature effects. Nano Lett. 2007, 7, 2486–2490.CrossRef
    [32]Zhang, Z.; Lu, Z.-Y.; Chen, P.-P.; Lu, W.; Zou, J. Controlling the crystal phase and structural quality of epitaxial InAs nanowires by tuning V/III ratio in molecular beam epitaxy. Acta Mater. 2015, 92, 25–32.CrossRef
    [33]Stadelmann, P. Java-EMS: JEMS. http://​cimeepflch/​research/​ jems (accessed on Oct 10, 2015).
    [34]Xu, H. Y.; Wang, Y.; Guo, Y.; Liao, Z. M.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zou, J. Defect-free <110>zinc-blende structured InAs nanowires catalyzed by palladium. Nano Lett. 2012, 12, 5744–5749.CrossRef
    [35]Zhang, Z.; Zheng, K.; Lu, Z.-Y.; Chen, P.-P.; Lu, W.; Zou, J. Catalyst orientation-induced growth of defect-free zinc-blende structured <00\(\bar 1\) > InAs nanowires. Nano Lett. 2015, 15, 876–882.CrossRef
    [36]Wolf, D. Atomic-level geometry of crystalline interfaces. In Materials Interfaces: Atomic-Level Structure and Properties; Wolf, D.; Yip, S., Eds.; Chapman & Hall: Cambridge, UK, 1992; pp 1–57.
    [37]Wolf, D.; Merkle, K. L. Correlation between the structure and energy of grain boundaries in metals. In Materials Interfaces: Atomic-Level Structure and Properties; Wolf, D.; Yip, S., Eds.; Chapman & Hall: Cambridge, UK, 1992; pp 87–150.
    [38]Lee, B. T.; Lee, J. Y.; Bourret, E. D. Atomic structure of twins in GaAs. Appl. Phys. Lett. 1990, 57, 346–347.
    [39]Jin, L.; Wang, J. B.; Cao, G. Y.; Xu, Z. L.; Jia, S. F.; Choy, W. C. H.; Leung, Y. P.; Yuk, T. I. {113} twinned znse bicrystal nanobelts filled with <111> twinnings. J. Phys. Chem. C 2008, 112, 4903–4907.
    [40]Zhang, Z.; Lu, Z. Y.; Xu, H. Y.; Chen, P. P.; Lu, W.; Zou, J. Structure and quality controlled growth of InAs nanowires through catalyst engineering. Nano Res. 2014, 7, 1640–1649.CrossRef
    [41]Wagner, R. S.; Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.
    [42]Faust, J. W., Jr; John, H. F. The growth of semiconductor crystals from solution using the twin-plane reentrant-edge mechanism. J. Phys. Chem. Solids 1964, 25, 1407–1415.CrossRef
    [43]Gamalski, A. D.; Voorhees, P. W.; Ducati, C.; Sharma, R.; Hofmann, S. Twin plane re-entrant mechanism for catalytic nanowire growth. Nano Lett. 2014, 14, 1288–1292.CrossRef
    [44]Brenner, S. S.; Sears, G. W. Mechanism of whisker growth — III nature of growth sites. Acta Metall. 1956, 4, 268–270.CrossRef
    [45]Zou, J.; Paladugu, M.; Wang, H.; Auchterlonie, G. J.; Guo, Y.-N.; Kim, Y.; Gao, Q.; Joyce, H. J.; Tan, H. H.; Jagadish, C. Growth mechanism of truncated triangular III–V nanowires. Small 2007, 3, 389–393.CrossRef
    [46]Paladugu, M.; Zou, J.; Guo, Y.-N.; Zhang, X.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y. Formation of hierarchical InAs nanoring / GaAs nanowire heterostructures. Angew. Chem., Int. Ed. 2009, 48, 780–783.
    [47]Paladugu, M.; Zou, J.; Guo, Y.-N.; Zhang, X.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y. Polarity driven formation of InAs/GaAs hierarchical nanowire heterostructures. Appl. Phys. Lett. 2008, 93, 201908.
  • 作者单位:Mun Teng Soo (1)
    Kun Zheng (2) (3)
    Qiang Gao (4)
    Hark Hoe Tan (4)
    Chennupati Jagadish (4)
    Jin Zou (1) (2)

    1. Materials Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
    2. Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD, 4072, Australia
    3. Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
    4. Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
In this study, leaf-like one-dimensional InAs nanostructures were grown by the metal–organic chemical vapor deposition method. Detailed structural characterization suggests that the nanoleaves contain relatively low-energy {122} or {133} mirror twins acting as their midribs and narrow sections connecting the nanoleaves and their underlying bases as petioles. Importantly, the mirror twins lead to identical lateral growth of the twinned structures in terms of crystallography and polarity, which is essential for the formation of lateral symmetrical nanoleaves. It has been found that the formation of nanoleaves is driven by catalyst energy minimization. This study provides a biomimic of leaf found in nature by fabricating a semiconductor nanoleaf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700