用户名: 密码: 验证码:
Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees
详细信息    查看全文
  • 作者:Hsiu-Ling Chou (1)
    Chung-Tay Yao (2)
    Sui-Lun Su (3)
    Chia-Yi Lee (3)
    Kuang-Yu Hu (4)
    Harn-Jing Terng (5)
    Yun-Wen Shih (3)
    Yu-Tien Chang (3)
    Yu-Fen Lu (3)
    Chi-Wen Chang (6)
    Mark L Wahlqvist (7)
    Thomas Wetter (8)
    Chi-Ming Chu (3)
  • 关键词:Breast cancer ; Microarray ; Artificial neural network ; Logistic regression ; Decision tree
  • 刊名:BMC Bioinformatics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:397KB
  • 参考文献:1. / American Cancer Society. 2011. http://www.cancer.org/docroot/home/index.asp
    2. Eifel P, Axelson JA, Costa J, Crowley J, Curran WJ Jr, Deshler A, Fulton S, Hendricks CB, Kemeny M, Kornblith AB: National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer: 1- November 2000. / J Natl Cancer Inst 2001, 93:979-89. CrossRef
    3. McGuire WL: Breast cancer prognostic factors: evaluation guidelines. / J Natl Cancer Inst 1991, 83:154-55. CrossRef
    4. Davis CA, Gerick F, Hintermair V, Friedel CC, Fundel K, Kuffner R, Zimmer R: Reliable gene signatures for microarray classification: assessment of stability and performance. / Bioinformatics 2006, 22:2356-363. CrossRef
    5. Gemignani F, Perra C, Landi S, Canzian F, Kurg A, Tonisson N, Galanello R, Cao A, Metspalu A, Romeo G: Reliable detection of beta-thalassemia and G6PD mutations by a DNA microarray. / Clin Chem 2002, 48:2051-054.
    6. Gutmann O, Kuehlewein R, Reinbold S, Niekrawietz R, Steinert CP, de Heij B, Zengerle R, Daub M: Fast and reliable protein microarray production by a new drop-in-drop technique. / Lab Chip 2005, 5:675-81. CrossRef
    7. Lassmann S, Kreutz C, Schoepflin A, Hopt U, Timmer J, Werner M: A novel approach for reliable microarray analysis of microdissected tumor cells from formalin-fixed and paraffin-embedded colorectal cancer resection specimens. / J Mol Med 2009, 87:211-24. CrossRef
    8. Shi L, Perkins RG, Fang H, Tong W: Reproducible and reliable microarray results through quality control: good laboratory proficiency and appropriate data analysis practices are essential. / Curr Opin Biotechnol 2008, 19:10-8. CrossRef
    9. Stirewalt DL, Pogosova-Agadjanyan EL, Khalid N, Hare DR, Ladne PA, Sala-Torra O, Zhao LP, Radich JP: Single-stranded linear amplification protocol results in reproducible and reliable microarray data from nanogram amounts of starting RNA. / Genomics 2004, 83:321-31. CrossRef
    10. van der Spek PJ, Kremer A, Murry L, Walker MG: Are gene expression microarray analyses reliable? A review of studies of retinoic acid responsive genes. / Genomics Proteomics Bioinformatics 2003, 1:9-4.
    11. Xu X, Li Y, Zhao H, Wen SY, Wang SQ, Huang J, Huang KL, Luo YB: Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray. / J Agric Food Chem 2005, 53:3789-794. CrossRef
    12. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y, d'Assignies MS: Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. / Clin Cancer Res 2007, 13:3207-214. CrossRef
    13. Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, Lindahl T, Pawitan Y, Hall P, Nordgren H: Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. / Cancer Res 2006, 66:10292-0301. CrossRef
    14. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B: Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. / J Natl Cancer Inst 2006, 98:262-72. CrossRef
    15. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. / Lancet 2005, 365:671-79.
    16. Wang Y, Sun G, Ji Z, Xing C, Liang Y: Weighted change-point method for detecting differential gene expression in breast cancer microarray data. / PLoS One 2012, 7:e29860. CrossRef
    17. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. / Proc Natl Acad Sci U S A 2005, 102:15545-5550. CrossRef
    18. Padoan A: / Net Reclassification Improvement (NRI) has been proposed as an alternative to the area under the curve of the the ROC. The MathWorks, Inc; 2010. http://www.mathworks.com/matlabcentral/fileexchange/28579-net-reclassification-improvem%20ent&watching=28579. Accessed 22. November 2012
    19. Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. / Stat Med 2008, 27:157-72. discussion 207-12 CrossRef
    20. Pencina MJ, D'Agostino RB Sr, Demler OV: Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. / Stat Med 2012, 31:101-13. CrossRef
    21. Pencina MJ, D'Agostino RB Sr, Steyerberg EW: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. / Stat Med 2011, 30:11-1. CrossRef
    22. Beyer SJ, Zhang X, Jimenez RE, Lee ML, Richardson AL, Huang K, Jhiang SM: Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer. / BMC Res Notes 2011, 4:397. CrossRef
    23. Delen D, Walker G, Kadam A: Predicting breast cancer survivability: a comparison of three data mining methods. / Artif Intell Med 2005, 34:113-27. CrossRef
    24. Kumar R, Sharma A, Tiwari RK: Application of microarray in breast cancer: An overview. / J Pharm Bioallied Sci 2012, 4:21-6. CrossRef
    25. Snow PB, Kerr DJ, Brandt JM, Rodvold DM: Neural network and regression predictions of 5-year survival after colon carcinoma treatment. / Cancer 2001, 91:1673-678. CrossRef
    26. Hsu YH: / Investigating the Models of Logistic Regression, Decision Tree, Artificial Neural Network and Hybrid Analysis for Predicting Coronary Artery Disease. Taipei, Taiwan: Master Thesis of National Defense Medical Center; 2007.
    27. Xu L, Tan AC, Winslow RL, Geman D: Merging microarray data from separate breast cancer studies provides a robust prognostic test. / BMC Bioinformatics 2008, 9:125. CrossRef
    28. Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S, Hall P, Han X, Holmberg L, Huang F, Klaar S: Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. / Breast Cancer Res 2005, 7:R953-R964. CrossRef
  • 作者单位:Hsiu-Ling Chou (1)
    Chung-Tay Yao (2)
    Sui-Lun Su (3)
    Chia-Yi Lee (3)
    Kuang-Yu Hu (4)
    Harn-Jing Terng (5)
    Yun-Wen Shih (3)
    Yu-Tien Chang (3)
    Yu-Fen Lu (3)
    Chi-Wen Chang (6)
    Mark L Wahlqvist (7)
    Thomas Wetter (8)
    Chi-Ming Chu (3)

    1. Department of Nursing, Far Eastern Memorial Hospital & Oriental Institute of Technology, New Taipei, Taiwan
    2. Department of Surgery, Cathay General Hospital, Taipei, Taiwan
    3. Section of Biomedical informatics, School of Public Health, National Defense Medical Center, Taipei, Taiwan
    4. Department of Bioinformatics, Chung Hua University, Hsinchu, Taiwan
    5. Advpharma, Inc, Taipei, Taiwan
    6. School of Nursing, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
    7. National Health Research Institute, Chunan, Taiwan
    8. Department of Medical Informatics, University of Heidelberg, Heidelberg, Germany
  • ISSN:1471-2105
文摘
Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann–Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. Results The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence-/p> Conclusions The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700