用户名: 密码: 验证码:
Electrocatalytic activities of Nafion/CdSe/Self-doped polyaniline composites to dopamine, uric acid, and ascorbic acid
详细信息    查看全文
  • 作者:Yeong-Tarng Shieh (1)
    Yi-Ting Lu (1) (2)
    Tzong-Liu Wang (1)
    Chien-Hsin Yang (1)
    Rong-Hsien Lin (2)
  • 关键词:Self ; doped polyaniline ; CdSe ; Nafion ; Electrocatalytic activity ; Cyclic voltammetry
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:18
  • 期:4
  • 页码:975-984
  • 全文大小:3,024 KB
  • 参考文献:1. Li CY, Cai YJ, Yang CH, Wu CH, Wei Y, Wen TC, Wang TL, Shieh YT, Lin WC, Chen WJ (2011) Highly sensitive and selective electrochemical determination of dopamine and ascorbic acid at Ag/Ag2S modified electrode. Electrochim Acta 56:1955-959 CrossRef
    2. Zare HR, Rajabzadeh N, Nasirizadeh N, Mazloum AM (2006) Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. J Electroanal Chem 589:60-9 CrossRef
    3. Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal Biochem 359:224-29 CrossRef
    4. Zhao Y, Gao Y, Zhan D, Liu H, Zhao Q, Kou Y, Shao Y, Li M, Zhuang Q, Zhu Z (2005) Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes–ionic liquid gel modified electrode. Talanta 66:51-7 CrossRef
    5. Aguilar R, Davila MM, Elizalde MP, Mattusch J, Wennrich R (2004) Capability of a carbon–polyvinylchloride composite electrode for the detection of dopamine, ascorbic acid and uric acid. Electrochim Acta 49:851-59 CrossRef
    6. Wang HS, Li TH, Jia WL, Xu HY (2006) Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosens Bioelectron 22:664-69 CrossRef
    7. Selvaraju T, Ramaraj R (2003) Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode. Electrochem Commun 5:667-72 CrossRef
    8. Li Y, Lin X (2006) Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly(vinyl alcohol) covalently modified glassy carbon electrode. Sensors Actuators B 115:134-39 CrossRef
    9. Liu A, Honma I, Zhou H (2007) Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon–nanotube composite-covered glassy-carbon electrode. Biosens Bioelectron 23:74-0 CrossRef
    10. Zhang L, Shi Z, Lang Q (2011) Fabrication of poly(orthanilic acid)–multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid. J Solid State Electrochem 15:801-09 CrossRef
    11. Yang S, Li G, Yang R, Xia M, Qu L (2011) Simultaneous voltammetric detection of dopamine and uric acid in the presence of high concentration of ascorbic acid using multi-walled carbon nanotubes with methylene blue composite film-modified electrode. J Solid State Electrochem 15:1909-918 CrossRef
    12. Li G, Yang S, Qu L, Yang R, Li J (2011) Simultaneous voltammetric determination of ascorbic acid and uric acid using a Nafion/multi-wall carbon nanotubes composite film-modified electrode. J Solid State Electrochem 15:161-66 CrossRef
    13. Zhou Y, He M, Huang C, Dong S, Zheng J (2012) A novel and simple biosensor based on poly(indoleacetic acid) film and its application for simultaneous electrochemical determination of dopamine and epinephrine in the presence of ascorbic acid. J Solid State Electrochem 16:2203-210 CrossRef
    14. Tsierkezos NG, Ritter U (2012) Oxidation of dopamine on multi-walled carbon nanotubes. J Solid State Electrochem 16:2217-226 CrossRef
    15. Shieh YT, Chen YA, Lin RH, Wang TL, Yang CH (2012) Temperature effects on electrocatalytic activities of carbon nanotubes/poly(N-isopropylacrylamide) composites. Electrochim Acta 76:518-25 CrossRef
    16. Shieh YT, Chen YA, Lin RH, Wang TL, Yang CH (2012) Temperature responsive carbon nanotubes/poly(N-isopropylacrylamide)-modified electrodes for electrochemical selective determination of dopamine, uric acid, and ascorbic acid. Colloid Polym Sci 290:1451-456 CrossRef
    17. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17:345-59 CrossRef
    18. Tatsuma T, Ogawa T, Sato R, Oyama N (2001) Peroxidase-incorporated sulfonated polyaniline–polycation complexes for electrochemical sensing of H2O2. J Electroanal Chem 501:180-85 CrossRef
    19. Zhu N, Chang Z, He P, Fang Y (2006) Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization. Electrochim Acta 51:3758-762 CrossRef
    20. Slim C, Ktari N, Cakara D, Kanoufi F, Combellas C (2008) Polyaniline films based ultramicroelectrodes sensitive to pH. J Electroanal Chem 612:53-2 CrossRef
    21. Prakash S, Rao CRK, Vijayan M (2009) Polyaniline–polyelectrolyte–gold(0) ternary nanocomposites: synthesis and electrochemical properties. Electrochim Acta 54:5919-927 CrossRef
    22. Bian LJ, Zhang JH, Qi J, Liu XX, Dermot D, Lau KT (2010) Immobilization of molybdenum oxide in polyaniline and electrocatalytic properties of the composite modified electrode. Sensors Actuators B 147:73-7 CrossRef
    23. Shieh YT, Jung JJ, Lin RH, Yang CH, Wang TL (2012) Electrocatalytic behavior of carbon nanotubes in electropolymerizations of self-doped polyaniline used as a sensing material. J Electrochem Soc 159:H921–H927 CrossRef
    24. Shieh YT, Jung JJ, Lin RH, Yang CH, Wang TL (2012) Electrocatalytic activity of self-doped polyaniline. Electrochim Acta 70:331-37 CrossRef
    25. Sanghavi BJ, Srivastava AK (2010) Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim Acta 55:8638-648 CrossRef
    26. Sanghavi BJ, Srivastava AK (2011) Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion–carbon nanotube composite glassy carbon electrode. Electrochim Acta 56:4188-196 CrossRef
    27. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2012) Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta 735:37-5 CrossRef
    28. Salinas-Torres D, Huerta F, Montilla F, Morallon E (2011) Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes. Electrochim Acta 56:2464-470 CrossRef
    29. Guo W, Xu L, Li F, Xu B, Yang Y, Liu S, Sun Z (2010) Chitosan-assisted fabrication and electrocatalytic activity of the composite film electrode of heteropolytungstate/carbon nanotubes. Electrochim Acta 55:1523-527 CrossRef
    30. Pang HL, Liu J, Hu D, Zhang XH, Chen JH (2010) Immobilization of laccase onto 1-aminopyrene functionalized carbon nanotubes and their electrocatalytic activity for oxygen reduction. Electrochim Acta 55:6611-616 CrossRef
    31. Shieh YT, Yu TY, Wang TL, Yang CH (2012) Effects of pH on electrocatalytic activity of carbon nanotubes in polyethylenimine composites. J Electroanal Chem 664:139-45 CrossRef
    32. Shieh YT, Yu TY, Wang TL, Yang CH, Liao WT (2012) Effects of pH on electrocatalytic activity of functionalized carbon nanotubes. Colloid Polym Sci 290:1- CrossRef
    33. Rivas GA, Rubianes MD, Rodr?guez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74:291-07 CrossRef
    34. Gao F, Yin J, Yao Z, Li M, Wang L (2010) A nanocomposite modified electrode: electrocatalytic properties and its sensing applications to hydrogen peroxide and glucose. J Electrochem Soc 157:F35–F39 CrossRef
    35. Henstridge MC, Dickinson EJF, Aslanoglu M, Batchelor-McAuley C, Compton RG (2010) Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films: the oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes. Sensors Actuators B 145:417-27 CrossRef
    36. Kozub BR, Rees NV, Compton RG (2010) Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sensors Actuators B 143:539-46 CrossRef
    37. Streeter I, Wildgoose GG, Shao L, Compton RG (2008) Cyclic voltammetry on electrode surfaces covered with porous layers: an analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes. Sensors Actuators B 133:462-66 CrossRef
    38. Huang CP, Liu SW, Chen TM, Li YK (2008) A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots. Sensors Actuator B 130:338-42 CrossRef
    39. Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555-560 CrossRef
    40. Tauc J (1974) Amorphous and liquid semiconductors. Plenum, New York CrossRef
    41. Baskoutas S, Terzisa AF (2006) Size-dependent band gap of colloidal quantum dots. J Appl Phys 99:013708 CrossRef
    42. Chen SA, Hwang GW (1996) Structure characterization of self-acid-doped sulfonic acid ring-substituted polyaniline in its aqueous solutions and as solid film. Macromolecules 29:3950-955 CrossRef
    43. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons, New York
    44. Bergren AJ, Porter MD (2006) The characteristics of selective heterogeneous electron transfer for optimization of redox recycling amplification systems. J Electroanal Chem 591:189-00 CrossRef
  • 作者单位:Yeong-Tarng Shieh (1)
    Yi-Ting Lu (1) (2)
    Tzong-Liu Wang (1)
    Chien-Hsin Yang (1)
    Rong-Hsien Lin (2)

    1. Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 811, Taiwan
    2. Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, 807, Taiwan
  • ISSN:1433-0768
文摘
Composites of Nafion, COOH-capped CdSe, and self-doped polyaniline (SPAN) were used to prepare novel chemical modified glassy carbon electrodes (Nafion/CdSe/SPAN/GCE). The electrocatalytic activities of the modified GCE to the redox reactions of dopamine (DA), uric acid (UA), and ascorbic acid (AA) were investigated by cyclic voltammetry (CV). CV curves revealed that the electrocatalytic activities of Nafion/CdSe/SPAN/GCE to oxidations of the analytes in solution of pH?7 were in the order of DA-gt;?UA-gt;?AA. This order was consistent with the strong-to-low extent of interactions between the modified GCE and the analytes. These interactions were consistent with the observations that the oxidation rate of DA followed a diffusion-controlled process whereas that of UA followed a surface adsorption-controlled process. The composites of casting at higher pH levels were found to exhibit better CdSe and SPAN dispersions in films and higher electrocatalytic activities. CdSe and SPAN exhibited insignificant synergistic effects on the oxidations of DA when cast from Nafion solutions of both low and high pHs whereas CdSe and SPAN exhibited much synergistic effects on the oxidations of UA when cast from the Nafion solution of high pH at 12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700