用户名: 密码: 验证码:
Genetic variants of glutamate receptor gene family in Taiwanese Kawasaki disease children with coronary artery aneurysms
详细信息    查看全文
  • 作者:Ying-Ju Lin (1) (2)
    Jeng-Sheng Chang (3)
    Xiang Liu (4)
    Hsinyi Tsang (4)
    Ting-Hsu Lin (1)
    Chiu-Chu Liao (1)
    Shao-Mei Huang (1)
    Wen-Kuei Chien (5) (6)
    Jin-Hua Chen (5) (6)
    Jer-Yuarn Wu (2) (7)
    Chien-Hsiun Chen (2) (7)
    Li-Ching Chang (7)
    Cheng-Wen Lin (8)
    Tsung-Jung Ho (10) (2) (9)
    Fuu-Jen Tsai (1) (11) (2)

    1. Department of Medical Research
    ; China Medical University Hospital ; Taichung ; Taiwan
    2. School of Chinese Medicine
    ; China Medical University ; Taichung ; Taiwan
    3. Department of Pediatrics
    ; China Medical University Hospital ; Taichung ; Taiwan
    4. National Institute of Allergy and Infectious Diseases
    ; National Institutes of Health ; Bethesda ; Maryland ; USA
    5. Biostatistics Center
    ; China Medical University ; Taichung ; Taiwan
    6. Biostatistics Center and School of Public Health
    ; Taipei Medical University ; Taipei ; Taiwan
    7. Institute of Biomedical Sciences
    ; Academia Sinica ; Taipei ; Taiwan
    8. Department of Medical Laboratory Science and Biotechnology
    ; China Medical University ; Taichung ; Taiwan
    10. Division of Chinese Medicine
    ; Tainan Municipal An-Nan Hospital -China Medical University ; Tainan ; Taiwan
    9. Division of Chinese Medicine
    ; China Medical University Beigang Hospital ; Yunlin County ; Taiwan
    11. Asia University
    ; Taichung ; Taiwan
  • 关键词:KD ; GRIK1 ; Single nucleotide polymorphism ; CAA
  • 刊名:Cell & Bioscience
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:4
  • 期:1
  • 全文大小:529 KB
  • 参考文献:1. Burns, JC, Glode, MP (2004) Kawasaki syndrome. Lancet 364: pp. 533-544 CrossRef
    2. Chang, LY, Chang, IS, Lu, CY, Chiang, BL, Lee, CY, Chen, PJ, Wang, JT, Ho, HN, Chen, DS, Huang, LM (2004) Epidemiologic features of Kawasaki disease in Taiwan, 1996鈥?002. Pediatrics 114: pp. e678-682 CrossRef
    3. Lin, W, Liu, HP, Chang, JS, Lin, YJ (2013) Genetic variations within the PSORS1 region affect Kawasaki disease development and coronary artery aneurysm formation. Biomed 3: pp. 73-81 CrossRef
    4. Chang, CJ, Kuo, HC, Chang, JS, Lee, JK, Tsai, FJ, Khor, CC, Chang, LC, Chen, SP, Ko, TM, Liu, YM, Chen, YJ, Hong, YM, Jang, GY, Hibberd, ML, Kuijpers, T, Burgner, D, Levin, M, Burns, JC, Davila, S, Chen, YT, Chen, CH, Wu, JY, Lee, YC (2013) Replication and meta-analysis of GWAS identified susceptibility loci in Kawasaki disease confirm the importance of B lymphoid tyrosine kinase (BLK) in disease susceptibility. PLoS One 8: pp. e72037 CrossRef
    5. Kim, JJ, Park, YM, Yoon, D, Lee, KY, Seob Song, M, Doo Lee, H, Kim, KJ, Park, IS, Nam, HK, Weon Yun, S, Ki Han, M, Mi Hong, Y, Young Jang, G, Lee, JK (2013) Identification of KCNN2 as a susceptibility locus for coronary artery aneurysms in Kawasaki disease using genome-wide association analysis. J Hum Genet 58: pp. 521-525 CrossRef
    6. Yan, Y, Ma, Y, Liu, Y, Hu, H, Shen, Y, Zhang, S, Tao, D, Wu, Q, Peng, Q, Yang, Y (2013) Combined analysis of genome-wide-linked susceptibility loci to Kawasaki disease in Han Chinese. Hum Genet 132: pp. 669-680 CrossRef
    7. Lin, MT, Hsu, CL, Chen, PL, Yang, WS, Wang, JK, Fann, CS, Wu, MH (2013) A genome-wide association analysis identifies novel susceptibility loci for coronary arterial lesions in patients with Kawasaki disease. Transl Res 161: pp. 513-515 CrossRef
    8. Onouchi, Y (2012) Genetics of Kawasaki disease: what we know and don鈥檛 know. Circ J 76: pp. 1581-1586 CrossRef
    9. Onouchi, Y, Ozaki, K, Burns, JC, Shimizu, C, Terai, M, Hamada, H, Honda, T, Suzuki, H, Suenaga, T, Takeuchi, T, Yoshikawa, N, Suzuki, Y, Yasukawa, K, Ebata, R, Higashi, K, Saji, T, Kemmotsu, Y, Takatsuki, S, Ouchi, K, Kishi, F, Yoshikawa, T, Nagai, T, Hamamoto, K, Sato, Y, Honda, A, Kobayashi, H, Sato, J, Shibuta, S, Miyawaki, M, Oishi, K (2012) A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet 44: pp. 517-521 CrossRef
    10. Lee, YC, Kuo, HC, Chang, JS, Chang, LY, Huang, LM, Chen, MR, Liang, CD, Chi, H, Huang, FY, Lee, ML, Huang, YC, Hwang, B, Chiu, NC, Hwang, KP, Lee, PC, Chang, LC, Liu, YM, Chen, YJ, Chen, CH, Chen, YT, Tsai, FJ, Wu, JY (2012) Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet 44: pp. 522-525 CrossRef
    11. Khor, CC, Davila, S, Breunis, WB, Lee, YC, Shimizu, C, Wright, VJ, Yeung, RS, Tan, DE, Sim, KS, Wang, JJ, Wong, TY, Pang, J, Mitchell, P, Cimaz, R, Dahdah, N, Cheung, YF, Huang, GY, Yang, W, Park, IS, Lee, JK, Wu, JY, Levin, M, Burns, JC, Burgner, D, Kuijpers, TW, Hibberd, ML (2011) Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet 43: pp. 1241-1246 CrossRef
    12. Kim, JJ, Hong, YM, Sohn, S, Jang, GY, Ha, KS, Yun, SW, Han, MK, Lee, KY, Song, MS, Lee, HD, Kim, DS, Lee, JE, Shin, ES, Jang, JH, Lee, YS, Kim, SY, Lee, JY, Han, BG, Wu, JY, Kim, KJ, Park, YM, Seo, EJ, Park, IS, Lee, JK (2011) A genome-wide association analysis reveals 1p31 and 2p13.3 as susceptibility loci for Kawasaki disease. Hum Genet 129: pp. 487-495 CrossRef
    13. Burgner, D, Davila, S, Breunis, WB, Ng, SB, Li, Y, Bonnard, C, Ling, L, Wright, VJ, Thalamuthu, A, Odam, M, Shimizu, C, Burns, JC, Levin, M, Kuijpers, TW, Hibberd, ML (2009) A genome-wide association study identifies novel and functionally related susceptibility Loci for Kawasaki disease. PLoS Genet 5: pp. e1000319 CrossRef
    14. Tsai, FJ, Lee, YC, Chang, JS, Huang, LM, Huang, FY, Chiu, NC, Chen, MR, Chi, H, Lee, YJ, Chang, LC, Liu, YM, Wang, HH, Chen, CH, Chen, YT, Wu, JY (2011) Identification of novel susceptibility Loci for kawasaki disease in a Han chinese population by a genome-wide association study. PLoS One 6: pp. e16853 CrossRef
    15. Peng, Q, Chen, C, Zhang, Y, He, H, Wu, Q, Liao, J, Li, B, Luo, C, Hu, X, Zheng, Z, Yang, Y (2012) Single-nucleotide polymorphism rs2290692 in the 3鈥睻TR of ITPKC associated with susceptibility to Kawasaki disease in a Han Chinese population. Pediatr Cardiol 33: pp. 1046-1053 CrossRef
    16. Debanne, D, Daoudal, G, Sourdet, V, Russier, M (2003) Brain plasticity and ion channels. J Physiol Paris 97: pp. 403-414 CrossRef
    17. Diguet, E, Fernagut, PO, Normand, E, Centelles, L, Mulle, C, Tison, F (2004) Experimental basis for the putative role of GluR6/kainate glutamate receptor subunit in Huntington鈥檚 disease natural history. Neurobiol Dis 15: pp. 667-675 CrossRef
    18. Meldrum, B (1993) Amino acids as dietary excitotoxins: a contribution to understanding neurodegenerative disorders. Brain Res Brain Res Rev 18: pp. 293-314 CrossRef
    19. Rogers, SW, Andrews, PI, Gahring, LC, Whisenand, T, Cauley, K, Crain, B, Hughes, TE, Heinemann, SF, McNamara, JO (1994) Autoantibodies to glutamate receptor GluR3 in Rasmussen鈥檚 encephalitis. Science 265: pp. 648-651 CrossRef
    20. Bolton, C, Paul, C (2006) Glutamate receptors in neuroinflammatory demyelinating disease. Mediators Inflamm 2006: pp. 93684 CrossRef
    21. Chen, H (2009) Possible Role of Platelet GluR1 Receptors in Comorbid Depression and Cardiovascular Disease. Cardiovasc Psychiatry Neurol 2009: pp. 424728 CrossRef
    22. Morrell, CN, Sun, H, Ikeda, M, Beique, JC, Swaim, AM, Mason, E, Martin, TV, Thompson, LE, Gozen, O, Ampagoomian, D, Sprengel, R, Rothstein, J, Faraday, N, Huganir, R, Lowenstein, CJ (2008) Glutamate mediates platelet activation through the AMPA receptor. J Exp Med 205: pp. 575-584 CrossRef
    23. Lin, SH, Maiese, K (2001) Group I metabotropic glutamate receptors prevent endothelial programmed cell death independent from MAP kinase p38 activation in rat. Neurosci Lett 298: pp. 207-211 CrossRef
    24. Chen, CH, Beard, RS, Bearden, SE (2012) Homocysteine impairs endothelial wound healing by activating metabotropic glutamate receptor 5. Microcirculation 19: pp. 285-295 CrossRef
    25. Chen, Z, Du, ZD, Liu, JF, Lu, DX, Li, L, Guan, YQ, Wan, SG (2012) Endothelial progenitor cell transplantation ameliorates elastin breakdown in a Kawasaki disease mouse model. Chin Med J (Engl) 125: pp. 2295-2301
    26. Lin, YJ, Chang, JS, Liu, X, Hung, CH, Lin, TH, Huang, SM, Jeang, KT, Chen, CY, Liao, CC, Lin, CW, Lai, CH, Tien, N, Lan, YC, Ho, MW, Chien, WK, Chen, JH, Huang, YC, Tsang, H, Wu, JY, Chen, CH, Chang, LC, Tsai, FJ (2013) Association between GRIN3A Gene Polymorphism in Kawasaki Disease and Coronary Artery Aneurysms in Taiwanese Children. PLoS One 8: pp. e81384 CrossRef
    27. Burgner, D, Curtis, N (2011) Kawasaki disease as a cause of encephalitis. Arch Dis Child 96: pp. 988-989 CrossRef
    28. Sander, T, Hildmann, T, Kretz, R, Furst, R, Sailer, U, Bauer, G, Schmitz, B, Beck-Mannagetta, G, Wienker, TF, Janz, D (1997) Allelic association of juvenile absence epilepsy with a GluR5 kainate receptor gene (GRIK1) polymorphism. Am J Med Genet 74: pp. 416-421 CrossRef
    29. Izzi, C, Barbon, A, Kretz, R, Sander, T, Barlati, S (2002) Sequencing of the GRIK1 gene in patients with juvenile absence epilepsy does not reveal mutations affecting receptor structure. Am J Med Genet 114: pp. 354-359 CrossRef
    30. Shibata, H, Joo, A, Fujii, Y, Tani, A, Makino, C, Hirata, N, Kikuta, R, Ninomiya, H, Tashiro, N, Fukumaki, Y (2001) Association study of polymorphisms in the GluR5 kainate receptor gene (GRIK1) with schizophrenia. Psychiatr Genet 11: pp. 139-144 CrossRef
    31. Hirata, Y, Zai, CC, Souza, RP, Lieberman, JA, Meltzer, HY, Kennedy, JL (2012) Association study of GRIK1 gene polymorphisms in schizophrenia: case鈥揷ontrol and family-based studies. Hum Psychopharmacol 27: pp. 345-351 CrossRef
    32. Kranzler, HR, Gelernter, J, Anton, RF, Arias, AJ, Herman, A, Zhao, H, Burian, L, Covault, J (2009) Association of markers in the 3鈥?region of the GluR5 kainate receptor subunit gene to alcohol dependence. Alcohol Clin Exp Res 33: pp. 925-930 CrossRef
    33. Kranzler, HR, Covault, J, Feinn, R, Armeli, S, Tennen, H, Arias, AJ, Gelernter, J, Pond, T, Oncken, C, Kampman, KM (2014) Topiramate treatment for heavy drinkers: moderation by a GRIK1 polymorphism. Am J Psychiatry 171: pp. 445-452 CrossRef
    34. Kranzler, HR, Armeli, S, Feinn, R, Tennen, H, Gelernter, J, Covault, J (2014) GRIK1 Genotype moderates topiramate鈥檚 effects on daily drinking level, expectations of alcohol鈥檚 positive effects and desire to drink. Int J Neuropsychopharmacol 17: pp. 1549-1556 CrossRef
    35. Ray, LA, Miranda, R, MacKillop, J, McGeary, J, Tidey, JW, Rohsenow, DJ, Gwaltney, C, Swift, RW, Monti, PM (2009) A preliminary pharmacogenetic investigation of adverse events from topiramate in heavy drinkers. Exp Clin Psychopharmacol 17: pp. 122-129 CrossRef
    36. Li, S, Qian, J, Yang, Y, Zhao, W, Dai, J, Bei, JX, Foo, JN, McLaren, PJ, Li, Z, Yang, J, Shen, F, Liu, L, Pan, S, Wang, Y, Li, W, Zhai, X, Zhou, B, Shi, L, Chen, X, Chu, M, Yan, Y, Wang, J, Cheng, S, Shen, J, Jia, W, Liu, J, Wen, Z, Li, A, Zhang, Y, Zhang, G (2012) GWAS identifies novel susceptibility loci on 6p21.32 and 21q21.3 for hepatocellular carcinoma in chronic hepatitis B virus carriers. PLoS Genet 8: pp. e1002791 CrossRef
    37. Lawand, NB, McNearney, T, Westlund, KN (2000) Amino acid release into the knee joint: key role in nociception and inflammation. Pain 86: pp. 69-74 CrossRef
    38. Piepoli, T, Mennuni, L, Zerbi, S, Lanza, M, Rovati, LC, Caselli, G (2009) Glutamate signaling in chondrocytes and the potential involvement of NMDA receptors in cell proliferation and inflammatory gene expression. Osteoarthritis Cartilage 17: pp. 1076-1083 CrossRef
    39. Flood, S, Parri, R, Williams, A, Duance, V, Mason, D (2007) Modulation of interleukin-6 and matrix metalloproteinase 2 expression in human fibroblast-like synoviocytes by functional ionotropic glutamate receptors. Arthritis Rheum 56: pp. 2523-2534 CrossRef
    40. Lindblad, SS, Mydel, P, Hellvard, A, Jonsson, IM, Bokarewa, MI (2012) The N-methyl-d-aspartic acid receptor antagonist memantine ameliorates and delays the development of arthritis by enhancing regulatory T cells. Neurosignals 20: pp. 61-71 CrossRef
    41. Miller, KE, Hoffman, EM, Sutharshan, M, Schechter, R (2011) Glutamate pharmacology and metabolism in peripheral primary afferents: physiological and pathophysiological mechanisms. Pharmacol Ther 130: pp. 283-309 CrossRef
    42. Burns, JC (2002) Commentary: translation of Dr. Tomisaku Kawasaki鈥檚 original report of fifty patients in 1967. Pediatr Infect Dis J 21: pp. 993-995 CrossRef
    43. Sharp, CD, Houghton, J, Elrod, JW, Warren, A, Jackson, TH, Jawahar, A, Nanda, A, Minagar, A, Alexander, JS (2005) N-methyl-D-aspartate receptor activation in human cerebral endothelium promotes intracellular oxidant stress. Am J Physiol Heart Circ Physiol 288: pp. H1893-1899 CrossRef
    44. Yoshio, T, Okamoto, H, Hirohata, S, Minota, S (2013) IgG anti-NR2 glutamate receptor autoantibodies from patients with systemic lupus erythematosus activate endothelial cells. Arthritis Rheum 65: pp. 457-463 CrossRef
    45. Weng, KP, Ou, SF, Lin, CC, Hsieh, KS (2011) Recent advances in the treatment of Kawasaki disease. J Chin Med Assoc 74: pp. 481-484 CrossRef
    46. Newburger, JW, Takahashi, M, Gerber, MA, Gewitz, MH, Tani, LY, Burns, JC, Shulman, ST, Bolger, AF, Ferrieri, P, Baltimore, RS, Wilson, WR, Baddour, LM, Levison, ME, Pallasch, TJ, Falace, DA, Taubert, KA (2004) Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 114: pp. 1708-1733 CrossRef
    47. Falcini, F (2006) Kawasaki disease. Curr Opin Rheumatol 18: pp. 33-38 CrossRef
    48. Lin, YJ, Chang, JS, Liu, X, Lin, TH, Huang, SM, Liao, CC, Lin, CW, Chien, WK, Chen, JH, Wu, JY, Chen, CH, Chang, LC, Tsang, H, Jeang, KT, Chen, CY, Tsai, FJ (2013) Sorting nexin 24 genetic variation associates with coronary artery aneurysm severity in Kawasaki disease patients. Cell Biosci 3: pp. 44 CrossRef
    49. Lin, YJ, Lan, YC, Lai, CH, Lin, TH, Huang, SM, Liao, CC, Lin, CW, Hung, CH, Tien, N, Liu, X, Chien, WK, Chen, JH, Tsai, FJ (2014) Association of Promoter Genetic Variants in Interleukin-10 and Kawasaki Disease With Coronary Artery Aneurysms. J Clin Lab Anal 28: pp. 461-464 CrossRef
    50. Kim, S, Dedeoglu, F (2005) Update on pediatric vasculitis. Curr Opin Pediatr 17: pp. 695-702 CrossRef
    51. Matsubara, T, Furukawa, S, Yabuta, K (1990) Serum levels of tumor necrosis factor, interleukin 2 receptor, and interferon-gamma in Kawasaki disease involved coronary-artery lesions. Clin Immunol Immunopathol 56: pp. 29-36 CrossRef
    52. Sherry, ST, Ward, MH, Kholodov, M, Baker, J, Phan, L, Smigielski, EM, Sirotkin, K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29: pp. 308-311 CrossRef
    53. Barrett, JC, Fry, B, Maller, J, Daly, MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: pp. 263-265 CrossRef
  • 刊物主题:Cell Biology; Microbiology;
  • 出版者:BioMed Central
  • ISSN:2045-3701
文摘
Background Patients with Kawasaki disease (KD), a pediatric systemic vasculitis, may develop coronary artery aneurysm (CAA) as a complication. To investigate the role of glutamate receptors in KD and its CAA development, we performed genetic association studies. Methods and results We examined the whole family of glutamate receptors by genetic association studies in a Taiwanese cohort of 262 KD patients. We identified glutamate receptor ionotropic, kainate 1 (GRIK1) as a novel susceptibility locus associated with CAA formation in KD. Statistically significant differences were noted for factors like fever duration, 1st Intravenous immunoglobulin (IVIG) used time (number of days after the first day of fever) and the GRIK1 (rs466013, rs425507, and rs38700) genetic variants. This significant association persisted even after using multivariate regression analysis (Full model: for rs466013: odds ratio =2.12; 95% CI =1.22-3.65; for rs425507: odds ratio =2.16; 95% CI =1.26-3.76; for rs388700: odds ratio =2.16; 95% CI =1.26-3.76). Conclusions We demonstrated that GRIK1 polymorphisms are associated CAA formation in KD, even when adjusted for fever duration and IVIG used time, and may also serve as a genetic marker for the CAA formation in KD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700