用户名: 密码: 验证码:
Molecular Characterization of Ethylene Response Sensor 1 (BoERS1) in Bambusa oldhamii
详细信息    查看全文
  • 作者:Yi-Lin Hsieh ; Ching-Fang Lu ; Bing-Yu Chiang…
  • 关键词:Bambusa oldhamii ; Ethylene receptor ; Histidine kinase ; Phosphorylation
  • 刊名:Plant Molecular Biology Reporter
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:34
  • 期:2
  • 页码:387-398
  • 全文大小:4,069 KB
  • 参考文献:Abeles F, Morgan P, Saltveit M (1992) Ethylene in plant biology. Academic Press, San Diego
    An F et al (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401. doi:10.​1105/​tpc.​2110.​076588 CrossRef PubMed PubMedCentral
    Besant PG, Attwood PV (2009) Detection and analysis of protein histidine phosphorylation. Mol Cell Biochem 329:93–106. doi:10.​1007/​s11010-009-0117-2 CrossRef PubMed
    Bilwes AM, Quezada CM, Croal LR, Crane BR, Simon MI (2001) Nucleotide binding by the histidine kinase CheA. Nat Struct Biol 8:353–360CrossRef PubMed
    Bisson MM, Groth G (2010) New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant 3:882–889. doi:10.​1093/​mp/​ssq036 CrossRef PubMed
    Bisson MM, Groth G (2011) New paradigm in ethylene signaling: EIN2, the central regulator of the signaling pathway, interacts directly with the upstream receptors. Plant Signal Behav 6:164–166CrossRef PubMed PubMedCentral
    Bisson MM, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424:1–6. doi:10.​1042/​bj20091102 CrossRef PubMed
    Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089. doi:10.​1126/​science.​241.​4869.​1086 CrossRef PubMed
    Bookout AL, Cummins CL, Mangelsdorf DJ, Pesola JM, Kramer MF (2006) High-throughput real-time quantitative reverse transcription PCR. Curr Protoc Mol Biol Chapter:Unit 15.18. doi:10.​1002/​0471142727.​mb0471141508s047​1142773
    Cao YR et al (2015) Tobacco ankyrin protein NEIP2 interacts with ethylene receptor NTHK1 and regulates plant growth and stress responses. Plant Cell Physiol 56:803–818. doi:10.​1093/​pcp/​pcv1009 CrossRef PubMed
    Chapman GP (1997) The bamboos: background to current research. The bamboos. Linnean Society, London
    Chen HH, Charng YY, Yang SF, Shaw JF (1998) Isolation and characterization of a broccoli cDNA (Accession No. AF047477) encoding an ERS-type ethylene receptor. Plant Physiol 117:1125–1127CrossRef
    Chiu WB, Lin CH, Chang CJ, Hsieh MH, Wang AY (2006) Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii. New Phytol 170:53–63CrossRef PubMed
    Cho E et al (2011) An expressed sequence tag analysis for the fast-growing shoots of Bambusa edulis Murno. J Plant Biol 54:402–408. doi:10.​1007/​s12374-011-9179-2 CrossRef
    Clark KL, Larsen PB, Wang X, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95:5401–5406CrossRef PubMed PubMedCentral
    Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci USA 96:9459–9464CrossRef PubMed PubMedCentral
    Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA 95:7825–7829CrossRef PubMed PubMedCentral
    Gunawardena J (2005) Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc Natl Acad Sci USA 102:14617–14622CrossRef PubMed PubMedCentral
    Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523CrossRef PubMed PubMedCentral
    Hyodo H, Yang SF (1971) Ethylene-enhanced synthesis of phenylalanine ammonia-lyase in pea seedlings. Plant Physiol 47:765–770CrossRef PubMed PubMedCentral
    Ju C et al (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109:19486–19491. doi:10.​11073/​pnas.​1214848109 CrossRef PubMed PubMedCentral
    Kamiyoshihara Y, Tieman DM, Huber DJ, Klee HJ (2012) Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit. Plant Physiol 160:488–497CrossRef PubMed PubMedCentral
    Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441CrossRef PubMed
    Liao SC, Lin CS, Wang AY, Sung HY (2013) Differential expression of genes encoding acid invertases in multiple shoots of bamboo in response to various phytohormones and environmental factors. J Agric Food Chem 61:4396–4405. doi:10.​1021/​jf400776m CrossRef PubMed
    Lin WC (1958) Studies on the growth of bamboo species in Taiwan. Bull Taiwan For Res Inst 54
    Lin CS, Kalpana K, Chang WC, Lin NS (2007) Improving multiple shoot proliferation in bamboo mosaic virus-free Bambusa oldhamii Munro propagation by liquid culture. Hortscience 42:1243–1246
    Ma B et al (2013) Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. Mol Plant 6:1830–1848. doi:10.​1093/​mp/​sst1087 CrossRef PubMed
    Ma B et al (2014) Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet 10, e1004701. doi:10.​1001371/​journal.​pgen.​1004701 , eCollection 1002014 OctCrossRef PubMed PubMedCentral
    Marina A, Waldburger CD, Hendrickson WA (2005) Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. Embo J 24:4247–4259. doi:10.​1038/​sj.​emboj.​7600886 CrossRef PubMed PubMedCentral
    Mayerhofer H, Panneerselvam S, Kaljunen H, Tuukkanen A, Mertens HD, Mueller-Dieckmann J (2014) Structural model of the cytosolic domain of the plant ethylene receptor 1 (ETR1). J Biol Chem 1:587667
    Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279:48734–48741. doi:10.​1074/​jbc.​M403100200 CrossRef PubMed
    Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112CrossRef PubMed
    Qiao H, Shen Z, Huang SS, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390–393. doi:10.​1126/​science.​1225974 CrossRef PubMed PubMedCentral
    Qiu L, Xie F, Yu J, Wen CK (2012) Arabidopsis RTE1 is essential to ethylene receptor ETR1 amino-terminal signaling independent of CTR1. Plant Physiol 159:1263–1276. doi:10.​1104/​pp.​112.​193979 CrossRef PubMed PubMedCentral
    Qu X, Schaller GE (2004) Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol 136:2961–2970CrossRef PubMed PubMedCentral
    Rothenberg M, Ecker JR (1993) Mutant analysis as an experimental approach towards understanding plant hormone action. Semin Dev Biol 4:3–13. doi:10.​1006/​sedb.​1993.​1002 CrossRef
    Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864CrossRef PubMed PubMedCentral
    Shi YH et al (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664CrossRef PubMed PubMedCentral
    Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714CrossRef PubMed PubMedCentral
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.​1093/​molbev/​mst2197 CrossRef PubMed PubMedCentral
    Tao JJ et al (2015) Tobacco TCTP interacts with ethylene receptor NTHK1 and enhances plant growth through promotion of cell proliferation. Plant Physiol. doi:10.​1104/​pp.​15.​00355
    Tomomori C et al (1999) Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat Struct Biol 6:729–734CrossRef PubMed
    Voet-van-Vormizeele J, Groth G (2003) High-level expression of the Arabidopsis thaliana ethylene receptor protein ETR1 in Escherichia coli and purification of the recombinant protein. Protein ExprPurif 32:89–94
    Voet-van-Vormizeele J, Groth G (2008) Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1. Mol Plant 1:380–387. doi:10.​1093/​mp/​ssn004 CrossRef PubMed
    Wang W, Hall AE, O'Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100:352–357CrossRef PubMed PubMedCentral
    Wuriyanghan H et al (2009) The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell. doi:10.​1105/​tpc.​108.​065391 PubMed PubMedCentral
    Xie C, Zhang JS, Zhou HL, Li J, Zhang ZG, Wang DW, Chen SY (2003) Serine/threonine kinase activity in the putative histidine kinase-like ethylene receptor NTHK1 from tobacco. Plant J 33:385–393CrossRef PubMed
    Xie F, Liu Q, Wen CK (2006) Receptor signal output mediated by the ETR1 N terminus is primarily subfamily I receptor dependent. Plant Physiol 142:492–508CrossRef PubMed PubMedCentral
    Yang C et al (2015) MHZ6/OsEIL1 and OsEIL2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol. doi:10.​1104/​pp.​15.​00353
    Yeh SH, Lin CS, Wu FH, Wang AY (2011) Analysis of the expression of BohLOL1, which encodes an LSD1-like zinc finger protein in Bambusa oldhamii. Planta 234:1179–1189. doi:10.​1007/​s00425-00011-01467-z CrossRef PubMed
    Yeh SH et al (2013) Identification of genes differentially expressed during the growth of Bambusa oldhamii. Plant Physiol Biochem 63:217–226. doi:10.​1016/​j.​plaphy.​2012.​1011.​1030 CrossRef PubMed
    Zeng G (1998) Sticky-end PCR: new method for subcloning. Biotechniques 25:206–208PubMed
    Zhang J, Yu J, Wen CK (2014) An alternate route of ethylene receptor signaling. Front Plant Sci 5:648. doi:10.​3389/​fpls.​2014.​00648 , eCollection 02014PubMed PubMedCentral
    Zhou H-L, Cao W-H, Cao Y-R, Liu J, Hao Y-J, Zhang J-S, Chen S-Y (2006) Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett 580:1239–1250CrossRef PubMed
  • 作者单位:Yi-Lin Hsieh (1)
    Ching-Fang Lu (1)
    Bing-Yu Chiang (1)
    Shu-Chien Liao (1)
    Rita P.-Y. Chen (2)
    Choun-Sea Lin (3)
    Ai-Yu Wang (1)
    Chien-Chih Yang (1)

    1. Department of Biochemical Science and Technology, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
    2. Institute of Biological Chemistry, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan
    3. Agricultural Biotechnology Research Center, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1572-9818
文摘
An ethylene receptor gene named BoERS1 was cloned from a bamboo (Bambusa oldhamii) cDNA library. The open reading frame of BoERS1 was 1,899 bp and encoded a 632-amino acid protein, which contains the five conserved motifs (H, N, G1, F, and G2 boxes) of the bacterial two-component system histidine kinases and shows high sequence similarity with other ethylene receptors in plants, such as rice and maize. Expression of BoERS1 in bamboo shoots increased with the growth of the emerging shoots. In an in vitro kinase assay, the expressed histidine kinase domain of BoERS1 (BHK) was phosphorylated in the presence of Mn2+, and LC-ESI-MS/MS analysis showed that four amino acids, namely T442, S444, S489, and S503, were phosphorylated. It is interesting to note that S489 and S503 are located in a loop region (L1) that is found only in plant histidine kinase-containing enzymes. The identification of multiple phosphorylation sites on BoERS1 provides a new avenue for future structure–function studies of the ethylene receptor protein family.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700