用户名: 密码: 验证码:
Biodegradation of Dichloromethane Along with Other VOCs from Pharmaceutical Wastewater
详细信息    查看全文
  • 作者:V. S. Priya (1)
    Ligy Philip (1)
  • 关键词:Biodegradation ; Dichloromethane ; Substrate interaction ; Competitive inhibition model ; Pharmaceutical wastewater
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:169
  • 期:4
  • 页码:1197-1218
  • 全文大小:1333KB
  • 参考文献:1. Jimenez-Gonzalez, C., Curzons, A. D., Constable, D. J. C., & Cunningham, V. L. (2004). Cradle-to-gate life cycle inventory and assessment of pharmaceutical compounds. / International Journal of Life Cycle Assessment, 9(2), 114-21. CrossRef
    2. Slater, C.S., Savelski, M.J., Hesketh, R.P. (2006). The selection and reduction of organic solvents in the pharmaceutical industry. Abstracts of Papers, American Chemical Society 10th Green Chemistry and Engineering Conference, Washington, DC, American Chemical Society.
    3. Stewart Slater, C., & Savelski, M. (2007). A method to characterize the greenness of solvents used in pharmaceutical manufacture. / Journal of Environmental Science Health, Part A, 42, 1-1.
    4. Sreekanth, Sivaramakrishna, D., Himabindu, V., & Anjaneyulu, Y. (2009). Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor. / Bioresource Technology, 100, 2534-539. CrossRef
    5. Oktem, Y. A., Ince, O., Sallis, P., Donnelly, T., & Ince, B. K. (2007). Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor. / Bioresource Technology, 99, 1089-096. CrossRef
    6. Zhou, P. M., Chengyi, S., Li, B., & Yi Qian. (2006). Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes. / Journal of Environmental Engineering, 132, 129-36. CrossRef
    7. Henry, M. P., Donlon, B. A., Lens, P. N., & Colleran, E. M. (1996). Use of anaerobic hybrid reactors for treatment of synthetic pharmaceutical wastewaters containing organic solvents. / Journal of Chemical Technology and Biotechnology, 66, 251-64. CrossRef
    8. Enright, A. M., McHugh, S., Collins, G., & O’Flaherty, V. (2005). Low-temperature anaerobic biological treatment of solvent containing pharmaceutical wastewater. / Water Research, 39, 4587-596. CrossRef
    9. Derwent, R. G. (1995). Sources, distributions, and fates of VOCs in the atmosphere. / Volatile Organic Compounds in the Atmosphere, 4, 1-6. CrossRef
    10. Agency for Toxic Substances and Disease Registry. (2000). / Toxicological profile for methylene chloride. Atlanta: U.S. Department of Health and Human Services, Public Health Service.
    11. Agency for Toxic Substances and Disease Registry. (1994). / Toxicological profile for acetone. Atlanta: U.S. Department of Health and Human Services, Public Health Service.
    12. Alvarez, P. J. J., & Vogel, T. M. (1991). Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. / Applied and Environmental Microbiology, 57, 2981-985.
    13. Maliyekkal, S. M., Rene, E. R., Philip, L., & Swaminathan, T. (2004). Performance of BTX degraders under substrate versatility conditions. / Journal of Hazardous Material, B, 109, 201-11. CrossRef
    14. Deeb, R. A., & Cohen, L. A. (1999). Temperature effects and substrate interactions during the aerobic biotransformation of btex mixtures by toluene-enriched consortia and / Rhodococcus rhodochrous. / Biotechnology and Bioengineering, 62, 526-36. CrossRef
    15. Chan, W. C., & Lai, T.-Y. (2010). Compounds interaction on the biodegradation of acetone and methyl ethyl ketone mixture in a composite bead biofilter. / Bioresource Technology, 101, 126-30. CrossRef
    16. Quesnel, D., & Nakhla, G. (2006). Removal kinetics of acetone and MIBK from a complex industrial wastewater by an acclimatized activated sludge. / Journal of Hazardous Material B, 132, 253-60. CrossRef
    17. Babeu, L., & Vaishnav, D. D. (1987). Prediction of biodegradability for selected organic chemicals. / Journal of Industrial Microbiology, 2, 107-15. CrossRef
    18. Urano, K., & Kato, Z. (1986). Evaluation of biodegradation ranks of priority organic compounds. / Journal of Hazardous Materials, 13, 147-59. CrossRef
    19. Novak, J. T., Goldsmith, C. D., Benoit, R. E., & Brien, J. H. O. (1985). Biodegradation of methanol and tertiary butyl alcohol in subsurface systems. / Water Science and Technology, 17, 71-5.
    20. Olaniran, A. O., Bhola, V., & Pillay, B. (2008). Aerobic biodegradation of a mixture of chlorinated organics in contaminated water. / African Journal of Biotechnology, 7(13), 2217-220.
    21. Frascari, D., Pinelli, D., Nocentini, M., Zannoni, A., Fedi, S., Baleani, E., et al. (2006). Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride, methane- and propane-utilizing biomasses. / Journal of Hazardous Materials B, 138, 29-9. CrossRef
    22. Oldenhuis, R., Kuijk, L., Lammers, A., Janssen, D. B., & Witholt, B. (1989). Degradation of chlorinated and non-chlorinated aromatic solvents in soil suspensions by pure bacterial cultures. / Applied Microbiology and Biotechnology, 30, 211-17. CrossRef
    23. Aziz, C. E., Georgiou, G., & Speitel, G. E., Jr. (1999). Co metabolism of chlorinated solvents and binary chlorinated solvent mixtures using / M. trichosporium OB3b PP358. / Biotechnology and Bioengineering, 65(1), 100-07. CrossRef
    24. Stucki, G., Galli, R., Rudolf Ebersold, H., & Leisinger, T. (1981). Dehalogenation of dichloromethane by cell extracts of / Hyphomicrobium DM2. / Archieves of Microbiology, 130, 366-71. CrossRef
    25. Doronina, N. V., Trotsenko, Y. A., Tourova, T. P., Kuznetsov, B. B., & Leisinger, T. (2000). / Methylopila helvetica sp. nov. and / Methylobacterium dichloromethanicum sp. nov.—novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. / Systematic and Applied Microbiology, 23(2), 210-18. CrossRef
    26. Malachowsky, K. J., Phelps, T. J., Teboli, A. B., Minnikin, D. E., & White, D. C. (1994). Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by / Rhodococcus species. / Applied and Environmental Microbiology, 60(2), 542-48.
    27. Lin, C. W., & Cheng, Y. W. (2007). Biodegradation kinetics of benzene, methyl tert-butyl ether, and toluene as a substrate under various substrate concentrations. / Journal of Chemical Technology and Biotechnology, 82, 51-7. CrossRef
    28. Balasubramanian, P., Philip, L., & Bhallamudi, S. M. (2011). Biodegradation of chlorinated and non-chlorinated VOCs from pharmaceutical industries. / Applied Biochemistry and Biotechnology, 163, 497-18. CrossRef
    29. Raghuvanshi, S., & Babu, B. V. (2006). / Biofiltration for the removal of methyl isobutyl ketone (MIBK). Pilani: Chemical Engineering Group, Birla Institute of Technology and Science.
    30. APHA. (2005). / Standard methods for water and wastewater examination (21st ed.). Washington, DC: American Public Health Association.
    31. Yoon, H., Klinzing, G., & Blanch, H. W. (1977). Competition for mixed substrates by microbial populations. / Biotechnology and Bioengineering, 19, 1193-210. CrossRef
    32. Segel, I. H. (1975). / Enzyme kinetics. New York: Wiley.
    33. Patil, D. M., Shrinivasen, T. K., Seth, G. K., & Murthy, Y. S. (1962). Treatment and disposal of synthetic drug wastes. / Indian Journal of Environmental Health, 4, 96-05.
    34. Virnig, T., Melka, J., Meidl, J.A. ( 2003).The challenges of treating a complex pharmaceutical wastewater, Technical report, WEFTEC 03, 76th Annual Technical Exhibition and Conference.
    35. Chang, B. V., Wu, W. B., & Yuan, S. Y. (1997). Biodegradation of benzene, toluene and other aromatic compounds by / Pseudomonas sp. D8. / Chemosphere, 35(12), 2807-815. CrossRef
    36. Hamed, T. A., Bayraktar, E., Mehmetoglu, T., & Mehmetoglu, U. (2003). Substrate interactions during the biodegradation of benzene, toluene and phenol mixtures. / Process Biochemistry, 39, 27-5. CrossRef
    37. Jindrov, E., Chocova, M., Demnerova, K., & Brenner, V. (2002). Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene. / Folia Microbiology, 47(2), 83-3. CrossRef
    38. Lee, E. Y., Jun, Y. S., & Cho, K. S. (2002). Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by / Stenotrophomonas maltophilia T3-c. / Journal of Air and Waste Management, 52, 400-06. CrossRef
    39. Dolfing, J., Van den Wijngaard, A. J., & Janssen, D. B. (1993). Microbiological aspects of the removal of chlorinated hydrocarbons from air. / Biodegradation, 4, 261-82. CrossRef
    40. Shijin, W. U., Xiang, Y. U., Zhihang, H. U., Lili, Z., & Jianmeng, C. (2009). Optimizing aerobic biodegradation of dichloromethane using response surface methodology. / Journal of Environmental Sciences, 21, 1276-283. CrossRef
    41. K?hne, J. M., K?hne, S., & ?im?nek, J. (2006). Multi-process herbicide transport in structured soil columns: Experiments and model analysis. / Journal of Contaminant Hydrology, 85, 1-2.
    42. Littlejohns, J. V., & Daugulis, A. J. (2008). Kinetics and interactions of BTEX compounds during degradation by a bacterial consortium. / Process Biochemistry, 43, 1068-076. CrossRef
    43. Freedman, D. L., Smith, C. R., & Noguera, D. R. (1997). Dichloromethane biodegradation under nitrate-reducing conditions. / Water Environment Research, 69(1), 115-22. CrossRef
    44. Den, W., Ravindran, V., & Pirbazar, M. (2005). Biofiltration of chlorinated volatile organic compounds-laboratory-scale and pilot-scale studies, Abstract of paper, Interfacial Phenomena in Environmental Systems, The Annual meeting Cincinnati
    45. Ergas, S. J., Kinney, K., Fuller, M. E., & Scow, K. M. (1994). Characterization of compost biofiltration system degrading dichloromethane. / Biotechnology and Bioengineering, 44, 1048-054. CrossRef
    46. Schroeder, E. D., Eweis, J. B., Chang, D. P. Y., & Veir, J. K. (2000). Biodegradation of recalcitrant components of organic mixtures. / Water, Air, and Soil Pollution, 123, 133-46. CrossRef
    47. Stucki, G. (1990). Biological decomposition of dichloromethane from a chemical process effluent. / Biodegradation, 1, 221-28. CrossRef
    48. Polasko, L. T. L., Mccarty, P. L., & Zehnder, A. J. B. (1984). Secondary substrate utilization of methylene chloride by an isolated strain of / Pseudomonas sp. / Applied and Environmental Microbiology, 47, 825-30.
    49. Mars, A. E., Prins, G. T., Wietzes, P., Koning, W. D., & Janssen, D. B. (1998). Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria. / Applied and Environmental Microbiology, 64(1), 208-15.
    50. Landa, A. S., Sipkema, E. M., Weijma, J., Beenackers, A. A. C. M., Dolfing, J., & Janssen, D. B. (1994). Cometabolic degradation of trichloroethylene by / Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. / Applied and Environmental Microbiology, 60(9), 3368-374.
    51. Prenafeta-Boldú, F. X., Vervoort, J., Grotenhuis, J. T. C., & van Groenestijn, J. W. (2002). Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus sp. strain T1 / Cladophialophora. / Applied and Environmental Microbiology, 68(6), 2660-665. CrossRef
    52. Lontoh, S., DiSpirito, A. A., & Semrau, J. D. (1999). Dichloromethane and trichloroethylene inhibition of methane oxidation by the membrane-associated methane monooxygenase of / Methylosinus trichosporium OB3b. / Archieves of Microbiology, 171, 301-08. CrossRef
    53. Monod, J. (1949). The growth of bacterial cultures. / Annual Revision of Microbiology, 3, 371. CrossRef
    54. Haldane (Andrews), J. F. (1968). A mathematical model for the continuous culture of microorganisms utilizing inhibitory substance. / Biotechnology and Bioengineering, 10(6), 707-23.
    55. Levenspiel, O. (1980). The Monod equation: a revisit and a generalization to product inhibition situations. / Biotechnology and Bioengineering, 22, 1671-687. CrossRef
    56. Webb, J. L. (1963). / Enzyme and metabolic inhibitors. Boston: Academic.
    57. Edwards, V. H. (1970). The influence of high substrate concentration on microbial kinetics. / Biotechnology and Bioengineering, 12, 679-12. CrossRef
  • 作者单位:V. S. Priya (1)
    Ligy Philip (1)

    1. Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India
  • ISSN:1559-0291
文摘
The present study dealt with the interaction of dichloromethane (DCM) with other non-chlorinated organic solvents such as methanol, acetone, toluene, and benzene, which are commonly present in the pharmaceutical wastewater, during biodegradation by mixed bacterial consortium. Non-chlorinated solvents were easily degradable even at an initial concentration of 1,000?mg/L, whereas only 20?mg/L of DCM was degraded when used as sole carbon source. The Monod Inhibition model appears to simulate the single pollutant biodegradation kinetics satisfactorily. In dual substrate systems, low concentrations (100?mg/L) of non-chlorinated solvents did not interfere with the DCM degradation. Non-interaction sum kinetics model was able to simulate the experimental results well in this case. However, high concentrations of non-chlorinated solvents (1,000?mg/L) affected the DCM degradation significantly. There was severe competition between the chlorinated and the non-chlorinated solvents. In this case, competitive inhibition model predicted the experimental results better compared to co-metabolism model. In multiple substrate system also, presence of DCM prolonged the degradation of the other non-chlorinated solvents. However, the presence of non-chlorinated compounds accelerated the degradation of DCM. The results of the present study may be helpful in optimal design of biological systems treating mixed pollutants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700