用户名: 密码: 验证码:
Temporal variability in 13C of respired CO 2 in a pine and a hardwood forest subject to similar climatic conditions
详细信息    查看全文
文摘
Temporal variability in the 13C of foliage (13CF), soil (13CS) and ecosystem (13CR) respired CO2 was contrasted between a 17.2-m tall evenly aged loblolly pine forest and a 35-m tall unevenly aged mature second growth mixed broadleaf deciduous forest in North Carolina, USA, over a 2-year period. The two forests are located at the Duke Forest within a kilometer of each other and are subject to identical climate and have similar soil types. The 13CF, collected just prior to dawn, was primarily controlled by the time-lagged vapor pressure deficit (VPD) in both stands; it was used for calculating the ratio of intercellular to ambient CO2 (Ci/Ca). A remarkable similarity was observed in the relationship between Ci/Ca and time-lagged VPD in these two forests despite large differences in hydraulic characteristics. This similarity emerged as a result of physiological adjustments that compensated for differences in plant hydraulic characteristics, as predicted by a recently proposed equilibrium hypothesis, and has implications to ecophysiological models. We found that in the broadleaf forest, the 13C of forest floor CO2 efflux dominated the 13CR, while in the younger pine forest, the 13C of foliage respired CO2 dominated 13CR. This dependence resulted in a more variable 13CR in the pine forest when compared to the broadleaf forest due to the larger photosynthetic contribution. Given the sensitivity of the atmospheric inversion models to 13CR, the results demonstrate that these models could be improved by accounting for stand characteristics, in addition to previously recognized effects of moisture availability, when estimating 13CR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700