用户名: 密码: 验证码:
Effects of mixing pine and broadleaved tree/shrub litter on decomposition and N dynamics in laboratory microcosms
详细信息    查看全文
  • 作者:Wei Li (1) (2)
    Kai-wen Pan (1)
    Ning Wu (1)
    Jin-chuang Wang (1)
    Chun-mei Han (1) (2)
    Xiao-lan Liang (1) (2)
  • 关键词:Litter decomposition ; N dynamics ; Microcosm ; Mixed ; species litter ; Exotic species
  • 刊名:Ecological Research
  • 出版年:2009
  • 出版时间:July 2009
  • 年:2009
  • 卷:24
  • 期:4
  • 页码:761-769
  • 全文大小:445KB
  • 参考文献:1. Amatya G, Chang SX, Beare MH, Mead DJ (2002) Soil properties under a / Pinus radiata-ryegrass silvopastoral system in New Zealand. Part II. C and N of soil microbial biomass, and soil N dynamics. Agrofor Syst 54:149-60. doi:10.1023/A:1015076607090 CrossRef
    2. Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility. A handbook of methods. CAB International, Wallingford
    3. Blair JM (1998) Nitrogen, sulfur and phosphorus dynamics in decomposing deciduous leaf litter in the southern Appalachians. Soil Biol Biochem 20:693-01. doi:10.1016/0038-0717(88)90154-X CrossRef
    4. Bloomfield J, Vogt KA, Vogt DA (1993) Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo experimental forest, Puerto Rico. Plant Soil 150:233-45. doi:10.1007/BF00013020 CrossRef
    5. Bi H, Jack S, Li R, Yan H, Wu Z, Cai S, Robert E (2003) Introduction of / Pinus radiata for afforestation: a review with reference to Aba, China. J For Res 14:311-22. doi:10.1007/BF02857861 CrossRef
    6. Boufalis A, Pellissier F (1994) Allelopathic effect of phenolic mixtures on respiration of two spruce mycorrhizal fungi. J Chem Ecol 20:2283-289. doi:10.1007/BF02033203 CrossRef
    7. Carrera AL, Vargas DN, Campanella MV, Bertiller MB, Sain CL, Mazzarino MJ (2005) Soil nitrogen in relation to quality and decomposability of plant litter in Patagonian Monte, Argentina. Plant Ecol 181:139-51. doi:10.1007/s11258-005-5322-9 CrossRef
    8. Conn C, Dighton J (2000) Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol Biochem 32:489-96. doi:10.1016/S0038-0717(99)00178-9 CrossRef
    9. Cronan CS, Lakeshman S, Patterson HH (1992) Effects of disturbance and soil amendments on dissolved organic carbon and organic acidity in red pine forest floors. J Environ Qual 21:457-63 CrossRef
    10. Cross AF, Schlesinger WH (1999) Plant regulation of soil nutrient distribution in the Northern Chihuahuan desert. Plant Ecol 145:11-5. doi:10.1023/A:1009865020145 CrossRef
    11. Don A, Kalbitz K (2005) Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biol Biochem 37:2171-179. doi:10.1016/j.soilbio.2005.03.019 CrossRef
    12. Dong M (1996) Survey. Observation and analysis of terrestrial biocommunities. Standards Press of China, Beijing, p 290 (in Chinese)
    13. Ganjegunte GK, Condron LM, Clinton PW, Davis MR (2005) Effects of mixing radiata pine needles and understory litters on decomposition and nutrients release. Biol Fertil Soils 41:310-19. doi:10.1007/s00374-005-0851-x CrossRef
    14. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230-46. doi:10.1111/j.0030-1299.2004.12738.x CrossRef
    15. Goma TJ, Bernhard RF (2006) Comparison of litter dynamics in three plantations of an indigenous timber-tree species ( / Terminalia superba) and a natural tropical forest in Mayombe, Congo. For Ecol Manage 229:304-13. doi:10.1016/j.foreco.2006.04.009 CrossRef
    16. H?ttenschwiler S, Tiunov AT, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191-18. doi:10.1146/annurev.ecolsys.36.112904.151932 CrossRef
    17. Hirobe M, Sabang J, Bhatta BK, Takeda H (2004) Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: decomposition rates and initial litter chemistry. J For Res 9:341-46. doi:10.1007/s10310-004-0087-x CrossRef
    18. Jensen ES (1994) Mineralization-immobilization of nitrogen in soil amended with low C:N ratio plant resides with different particle size. Soil Biol Biochem 26:519-21. doi:10.1016/0038-0717(94)90185-6 CrossRef
    19. Jirka AM, Carter MJ (1975) Micro semi-automated analysis of surface and wastewaters for chemical oxygen demand. Anal Chem 47:1397-402. doi:10.1021/ac60358a004 CrossRef
    20. Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413-23. doi:10.1016/j.soilbio.2004.08.008 CrossRef
    21. Jones DL, Shannon D, Murphy DV, Farrar J (2004) Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol Biochem 36:749-56. doi:10.1016/j.soilbio.2004.01.003 CrossRef
    22. Kadeba O, Aduayi EA (1985) Litter production, nutrient recycling and litter accumulation in / Pinus caribaea Morelet var. / hondurensis stands in the northern Guinea savanna of Nigeria. Plant Soil 86:197-06. doi:10.1007/BF02182894 CrossRef
    23. Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277-04. doi:10.1097/00010694-200004000-00001 CrossRef
    24. Kaneko N, Salamanca EF (1999) Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak-pine stand in Japan. Ecol Res 14:131-38. doi:10.1046/j.1440-1703.1999.00292.x CrossRef
    25. Keeney DR, Nelson DW (1982) Nitrogen-inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2, 2nd edn. Series Agronomy 9. ASA, SSSA, Madison, pp 643-98
    26. Klemmedson JO (1992) Decomposition and nutrient release from mixtures of Gambel oak and ponderosa pine leaf litter. For Ecol Manage 47:349-61. doi:10.1016/0378-1127(92)90284-G CrossRef
    27. Kloster MB (1974) The determination of tannin and lignin. J Am Water Works Assoc 66:44-6
    28. Kong W, Zheng Z (2004) Litterfall of four man-made forests in Maoxian, Sichuan (in Chinese). J Cent S For Univ 24:27-1
    29. Lambers H, Chapin FS, Pons T (1998) Decomposition. In: Plant physiological ecology. Springer, Berlin Heidelberg New York, pp 495-02
    30. Loranger G, Ponge JF, Imbert D, Lavelle P (2002) Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biol Fertil Soils 35:247-52. doi:10.1007/s00374-002-0467-3 CrossRef
    31. Lousier JD, Parkinson D (1978) Chemical element dynamics in decomposing leaf litter. Can J Bot 56:2795-812. doi:10.1139/b78-335 CrossRef
    32. Maithani K, Arunachalam A, Tripathi RS, Pandey HN (1998) Influence of leaf litter quality on N mineralization in soils of subtropical humid forest regrowths. Biol Fertil Soils 27:44-0. doi:10.1007/s003740050398 CrossRef
    33. Mary B, Recous S, Darwis D, Robin D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 181:71-2. doi:10.1007/BF00011294 CrossRef
    34. McTiernan KB, Ineson P, Coward PA (1997) Respiration and nutrient release from tree leaf litter mixtures. Oikos 78:527-38. doi:10.2307/3545614 CrossRef
    35. Messier C, Keenan R, Kimmins JP (1995) The effects of soil mixing on soil nutrient status, recovery of competing vegetation and conifer growth on ceder-hemlock cutovers in coastal British Columbia. New For 9:163-79. doi:10.1007/BF00035485
    36. Murphy DV, Macdonald AJ, Stochdale EA, Goulding KWT, Fortune S, Gaunt JL, Poulton PR, Wakefield JA, Webster CP, Wilmer WS (2000) Soluble organic nitrogen in agricultural soils. Biol Fertil Soils 30:374-87. doi:10.1007/s003740050018 CrossRef
    37. Neff JC, Chapin FSIII, Vitousek PM (2003) Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Front Ecol Environ 1:205-11 CrossRef
    38. Nilsson M-C, Wardle DA, Dahlberg A (1999) Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 86:16-6. doi:10.2307/3546566 CrossRef
    39. Osono T, Takeda H (2005) Decomposition of lignin, holocellulose, polyphenol and soluble carbohydrate in leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20:41-9. doi:10.1007/s11284-004-0002-0 CrossRef
    40. Parnas H (1975) Model for decomposition of organic material by micro-organisms. Soil Biol Biochem 7:161-69. doi:10.1016/0038-0717(75)90014-0 CrossRef
    41. Polyakova O, Billor N (2007) Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. For Ecol Manage 253:11-8. doi:10.1016/j.foreco.2007.06.049 CrossRef
    42. Qualls RG (2000) Comparison of the behavior of soluble organic and inorganic nutrients in forest soils. For Ecol Manage 138:29-0. doi:10.1016/S0378-1127(00)00410-2 CrossRef
    43. Reich PB, Grigal DF, Aber JD, Gower ST (1997) Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology 78:335-47
    44. Salamanca EF, Kaneko N, Katagiri S (1998) Effects of leaf litter mixtures on the decomposition of / Quercus serrata and / Pinus densiflora using field and laboratory microcosm methods. Ecol Eng 10:53-3. doi:10.1016/S0925-8574(97)10020-9 CrossRef
    45. Sall SN, Masse D, Bernhard-Reversat F, Guisse A, Chotte J (2003) Microbial activities during the early stage of laboratory decomposition of tropical leaf litters: the effect of interactions between litter quality and exogenous inorganic nitrogen. Biol Fertil Soils 39:103-11. doi:10.1007/s00374-003-0679-1 CrossRef
    46. Satti P, Mazzarino MJ, Gobbi M, Funes F, Roselli L, Fernandez H (2003) Soil N dynamics in relation to leaf litter quality and soil fertility in north-western Patagonian forests. J Ecol 91:173-81. doi:10.1046/j.1365-2745.2003.00756.x CrossRef
    47. Schimel JP, H?ttenschwiler S (2007) Nitrogen transfer between decomposing leaves of different N status. Soil Biol Biochem 39:1428-436. doi:10.1016/j.soilbio.2006.12.037 CrossRef
    48. Schwendener CM, Lehmann J, de Camargo PB, Luiz?o RCC, Fermandes ECM (2005) Nitrogen transfer between high- and low-quality leaves on a nutrient-poor Oxisol determined by 15?N enrichment. Soil Biol Biochem 37:787-94. doi:10.1016/j.soilbio.2004.10.011 CrossRef
    49. Stepanauskas R, Edling H, Tranvik LJ (1999) Differential dissolved organic nitrogen availability and bacterial aminopeptidase activity in limnic and marine waters. Microb Ecol 38:264-72. doi:10.1007/s002489900176 CrossRef
    50. Trinsoutrol I, Recous S, Mary B, Nicolardot B (2000) C and N flux of decomposing 13C and 15?N / Brassica napus L.: effect of residue composition and N content. Soil Biol Biochem 32:1717-730. doi:10.1016/S0038-0717(00)00090-0 CrossRef
    51. Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method of determination of fiber and lignin. JAOAC 46:826-35
    52. Vargas DN, Bertiller MB, Ares JO, Carrera AL, Sain CL (2006) Soil C and N dynamics induced by leaf-liter decomposition of shrubs and perennial grasses of the Patagonian Monte. Soil Biol Biochem 38:2401-410. doi:10.1016/j.soilbio.2006.03.006 CrossRef
    53. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87-15. doi:10.1007/BF00002772 CrossRef
    54. Wang Q, Wang S, Fan B, Yu X (2007) Litter production, leaf litter decomposition and nutrient return in / Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species. Plant Soil 297:201-11. doi:10.1007/s11104-007-9333-2 CrossRef
    55. Yu Z, Zhang Q, Kraus TEC, Dahlgren RA, Anastasio C, Zasoski RJ (2002) Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry 61:173-98. doi:10.1023/A:1020221528515 CrossRef
  • 作者单位:Wei Li (1) (2)
    Kai-wen Pan (1)
    Ning Wu (1)
    Jin-chuang Wang (1)
    Chun-mei Han (1) (2)
    Xiao-lan Liang (1) (2)

    1. Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, 610041, Chengdu, People’s Republic of China
    2. Graduate School of the Chinese Academy of Sciences, 100039, Beijing, China
文摘
This study was carried out to compare the ecological function of exotic pine (Pinus radiata-/em>Pr) and native pine (Pinus tabulaeformis-/em>Pt) in terms of litter decomposition and its related N dynamics and to evaluate if the presence of broad-leaved tree species (Cercidiphyllum japonicum—Cj) or shrub species (Ostryopsis davidiana-/em>Od) litter would promote the decomposition of pine needles and N cycling. Mass remaining, N release of the four single-species litters and mixed-species (Pt?+?Cj; Pr?+?Cj; Pt?+?Od; Pr?+?Od) litters and soil N dynamics were measured at microcosm scale during an 84-day incubation period. The Pt and Pr litter, with poorer substrate quality, indicated slower decomposition rates than did the Cj and Od litter. Due to their high C/N ratios, the N mass of Pt and Pr litter continuously increased during the early stage of decomposition, which showed that Pt and Pr litter immobilized exogenous N by microbes. No significant differences of soil inorganic, dissolved organic and microbial biomass N were found between the Pt and Pr microcosm at each sampling. The results showed that the exotic Pr performed similar ecological function to the native Pt in terms of litter decomposition and N dynamics during the early stage. The presence of Cj or Od litter increased the decomposition rates of pine needle litter and also dramatically increased soil N availability. So it is feasible for plantation managers to consider the use of Cj as an ameliorative species or to retain Od in pine plantations to promote the decomposition of pine litter and increase nutrient circulation. The results also suggested that different species litters induced different soil dissolved organic nitrogen (DON). As a major soluble N pool in soil, DON developed a different changing tendency over time compared with inorganic N, and should be included into soil N dynamic under the condition of our study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700