用户名: 密码: 验证码:
Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions
详细信息    查看全文
  • 作者:Haijing Yan ; Meichen Meng ; Lei Wang ; Aiping Wu ; Chungui Tian ; Lu Zhao…
  • 关键词:small ; sized tungsten nitride ; 3D CNT ; rGO ; bifunctional catalyst ; methanol oxidation reaction ; oxygen reduction reaction
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:329-343
  • 全文大小:3,413 KB
  • 参考文献:[1]Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.CrossRef
    [2]Long, N. V.; Yang, Y.; Thi, C. M.; van Minh, N.; Cao, Y. Q.; Nogami, M. The development of mixture, alloy, and core–shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells. Nano Energy 2013, 2, 636–676.CrossRef
    [3]Tong, Y. Y.; Kim, H. S.; Babu, P. K.; Waszczuk, P.; Wieckowski, A.; Oldfield, E. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J. Am. Chem. Soc. 2002, 124, 468–473.CrossRef
    [4]Fang, B. Z.; Chaudhari, N. K.; Kim, M. S.; Kim, J. H.; Yu, J. S. Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell. J. Am. Chem. Soc. 2009, 131, 15330–15338.CrossRef
    [5]Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160.CrossRef
    [6]Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693–3695.CrossRef
    [7]Guo, S. J.; Dong, S. J.; Wang, E. K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547–555.CrossRef
    [8]Cui, Z. M.; Chen, H.; Zhao, M. T.; Marshall, D.; Yu, Y. C.; Abruña, H.; DiSalvo, F. J. Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts. J. Am. Chem. Soc. 2014, 136, 10206–10209.CrossRef
    [9]Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.CrossRef
    [10]Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt–Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.CrossRef
    [11]Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H. Q.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci, 2015, 8, 350–363.CrossRef
    [12]Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. H. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem., Int. Ed. 2008, 47, 3588–3591.CrossRef
    [13]Wu, J. B.; Yang, H. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res. 2011, 4, 72–82.CrossRef
    [14]Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRef
    [15]Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H. Nanowiredirected templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385–14388.CrossRef
    [16]Yang, Z.; Yao, Z.; Li, G. F.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.; Chen, X. A.; Huang, S. M. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211.CrossRef
    [17]Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A. J.; Zhang, W. M.; Zhu, Z. H.; Smith, S. C.; Jaroniec, M. et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 2011, 133, 20116–20119.CrossRef
    [18]Lee, K. C.; Zhang, L.; Lui, H. S.; Hui, R.; Shi, Z.; Zhang, J. J. Oxygen reduction reaction (ORR) catalyzed by carbonsupported cobalt polypyrrole (Co-PPy/C) electrocatalysts. Electrochim. Acta 2009, 54, 4704–4711.CrossRef
    [19]Zhu, Y. S.; Zhang, B. S.; Liu, X.; Wang, D. W.; Su, D. S. Unravelling the structure of electrocatalytically active Fe–N complexes in carbon for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2014, 53, 10673–10677.CrossRef
    [20]Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 5593–5597.CrossRef
    [21]Shen, A. L.; Zou, Y. Q.; Wang, Q.; Dryfe, R. A. W.; Huang, X. B.; Dou, S.; Dai, L. M.; Wang, S. Y. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem., Int. Ed. 2014, 53, 10804–10808.CrossRef
    [22]Houchins, C.; Kleen, G. J.; Spendelow, J. S.; Kopasz, J.; Peterson, D.; Garland, N. L.; Ho, D. L.; Marcinkoski, J.; Martin, K. E.; Tyler, R. et al. U. S. DOE progress towards developing low-cost, high performance, durable polymer electrolyte membranes for fuel cell applications. Membranes 2012, 2, 855–878.CrossRef
    [23]Chen, J. G. Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities. Chem. Rev. 1996, 96, 1477–1498.CrossRef
    [24]Liang, C. H.; Ding, L.; Li, C.; Pang, M.; Su, D. S.; Li, W. Z.; Wang, Y. M. Nanostructured WCx/CNTs as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction. Energy Environ. Sci. 2010, 3, 1121–1127.CrossRef
    [25]Cui, Z. M.; Gong, C.; Guo, C. X.; Li, C. M. Mo2C/CNTs supported Pd nanoparticles for highly efficient catalyst towards formic acid electrooxidation. J. Mater. Chem. A 2013, 1, 1179–1184.CrossRef
    [26|]Yin, J.; Wang, L.; Tian, C. G.; Tan, T. X.; Mu, G.; Zhao, L.; Fu, H. G. Low-Pt loaded on a vanadium nitride/graphitic carbon composite as an efficient electrocatalyst for the oxygen reduction reaction. Chem. Eur. J. 2013, 19, 13979–13986.CrossRef
    [27]Yan, H. J.; Tian, C. G.; Sun, L.; Wang, B.; Wang, L.; Yin, J.; Wu, A. P.; Fu, H. G. Small-sized and high-dispersed WN from [SiO4(W3O9)4]4-clusters loading on GO-derived graphene as promising carriers for methanol electro-oxidation. Energy Environ. Sci. 2014, 7, 1939–1949.CrossRef
    [28]Whitby, R. L. D. Chemical control of graphene architecture: Tailoring shape and properties. ACS Nano 2014, 8, 9733–9754.CrossRef
    [29]Lee, S. H.; Sridhar, V.; Jung, J. H.; Karthikeyan, K.; Lee, Y. S.; Mukherjee, R.; Koratkar, N.; Oh, I. K. Graphenenanotube- iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 2013, 7, 4242–4251.CrossRef
    [30]Li, S. S.; Luo, Y. H.; Lv, W.; Yu, W. J.; Wu, S. D.; Hou, P. X.; Yang, Q. H.; Meng, Q. B.; Liu, C.; Cheng, H. M. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv. Energy Mater. 2011, 1, 486–490.CrossRef
    [31]Youn, D. H.; Han, S.; Kim, J. Y.; Kim, J. Y.; Park, H.; Choi, S. H.; Lee, J. S. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube–graphene hybrid support. ACS Nano 2014, 8, 5164–5173.CrossRef
    [32]Duan, J. J.; Chen, S.; Chambers, B. A.; Andersson, G. G.; Qiao, S. Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 2015, 27, 4234–4241.CrossRef
    [33]Zhang, L. M.; Lu, Z. X.; Zhao, Q. H.; Huang, J.; Shen, H.; Zhang, Z. J. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 2011, 7, 460–464.CrossRef
    [34]Li, J.; Tang, W. J.; Huang, J. W.; Jin, J.; Ma, J. T. Polyethyleneimine decorated graphene oxide-supported Ni1-x Fex bimetallic nanoparticles as efficient and robust electrocatalysts for hydrazine fuel cells. Catal. Sci. Technol. 2013, 3, 3155–3162.CrossRef
    [35]Hu, X. G.; Wang, T.; Qu, X. H.; Dong, S. J. In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials. J. Phys. Chem. B 2006, 110, 853–857.CrossRef
    [36]Cao, X. Y.; Chen, J. J.; Wen, S. H.; Peng, C.; Shen, M. W.; Shi X. Y. Effect of surface charge of polyethyleneiminemodified multiwalled carbon nanotubes on the improvement of polymerase chain reaction. Nanoscale 2011, 3, 1741–1747.CrossRef
    [37]Yu, D. S.; Dai, L. M. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 2010, 1, 467–470.CrossRef
    [38]Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.CrossRef
    [39]Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruo, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRef
    [40]Zhang, C. H.; Fu, L.; Liu, N.; Liu, M. H.; Wang, Y. Y.; Liu, Z. F. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 2011, 23, 1020–1024.CrossRef
    [41]Fernandes, D. M.; Brett, C. M. A.; Cavaleiro, A. M. V. Layer-by-layer self-assembly and electrocatalytic properties of poly(ethylenimine)-silicotungstate multilayer composite films. J Solid State Electrochem. 2011, 15, 811–819.CrossRef
    [42]Patil, A. J.; Vickery, J. L.; Scott, T. B.; Mann, S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. 2009, 21, 3159–3164.CrossRef
    [43]Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.CrossRef
    [44]Liu, R. L.; Wu, D. Q.; Feng, X. L.; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed. 2010, 122, 2619–2623.CrossRef
    [45]Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of “active sites”: nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956–5961.CrossRef
    [46]Sun, L.; Tian, C. G.; Fu, Y.; Yang, Y.; Yin, J.; Wang, L.; Fu, H. G. Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem. Eur. J. 2014, 20, 564–574.CrossRef
    [47]He, C. Y.; Meng, H.; Yao, X. Y.; Shen, P. K. Rapid formation of nanoscale tungsten carbide on graphitized carbon for electrocatalysis. Int. J. Hydrogen Energy 2012, 37, 8154–8166.CrossRef
    [48]Wang, R. H.; Yang, J.; Shi, K. Y.; Wang, B.; Wang, L.; Tian, G. H; Bateer, B.; Tian, C. G.; Shen, P. K.; Fu, H. G. Single-step pyrolytic preparation of Mo2C/graphitic carbon nanocomposite as catalyst carrier for the direct liquid-feed fuel cells. RSC Adv. 2013, 3, 4771–4777.CrossRef
    [49]Sun, S. H.; Zhang, G. X.; Gauquelin, N.; Chen, N.; Zhou, J. G.; Yang, S. L.; Chen, W. F.; Meng, X. B.; Geng, D. S.; Banis, M. N. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1775.
    [50]Wang, D. L.; Lu, S. F.; Xiang, Y.; Jiang, S. P. Self- assembly of HPW on Pt/C nanoparticles with enhanced electrocatalysis activity for fuel cell applications. Appl. Catal. B: Environ. 2011, 103, 311–317.CrossRef
    [51]Cui, G. F.; Shen, P. K.; Meng, H.; Zhao, J.; Wu, G. Tungsten carbide as supports for Pt electrocatalysts with improved CO tolerance in methanol oxidation. J Power Sources 2011, 196, 6125–6130.CrossRef
    [52]Su, F. B.; Tian, Z. Q.; Poh, C. K.; Wang, Z.; Lim, S. H.; Liu, Z. L.; Lin, J. Y. Pt nanoparticles supported on nitrogendoped porous carbon nanospheres as an electrocatalyst for fuel cells. Chem. Mater. 2010, 22, 832–839.CrossRef
    [53]Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y.; Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.CrossRef
    [54]Kongkanand, A.; Kuwabata, S.; Girishkumar, G.; Kamat, P. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 2006, 22, 2392–2396.CrossRef
    [55]Selvarani, G.; Selvaganesh, S. V.; Krishnamurthy, S.; Kiruthika, G. V. M.; Sridhar, P.; Pitchumani, S.; Shukla, A. K. A methanol-tolerant carbon-supported Pt–Au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT. J. Phys. Chem. C 2009, 113, 7461–7468.CrossRef
    [56]Cho, Y. H.; Kim, O. H.; Chung, D. Y.; Choe, H.; Cho, Y. H.; Sung, Y. E. PtPdCo ternary electrocatalyst for methanol tolerant oxygen reduction reaction in direct methanol fuel cell. Appl. Catal. B: Environ. 2014, 154–155, 309–315.CrossRef
    [57]Jeon, M. K.; Lee, K. R.; Lee, W. S.; Daimon, H.; Nakahara, A.; Woo, S. I. Investigation of Pt/WC/C catalyst for methanol electro-oxidation and oxygen electro-reduction. J. Power Sources 2008, 185, 927–931.CrossRef
  • 作者单位:Haijing Yan (1)
    Meichen Meng (1)
    Lei Wang (1)
    Aiping Wu (1)
    Chungui Tian (1)
    Lu Zhao (1)
    Honggang Fu (1)

    1. Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin, 150080, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanoparticles (NPs), of about 3 nm in size, into a 3D carbon nanotube-reduced graphene oxide framework (CNT-rGO) using an assembly route. After depositing Pt, the contacted and strongly coupled Pt–WN NPs were formed, resulting in electron transfer from Pt to WN. The 3D Pt–WN/CNT-rGO hybrid can be used as a bifunctional electrocatalyst for both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). In MOR, the catalysts showed excellent CO tolerance and a high mass activity of 702.4 mA·mgPt –1, 2.44 and 3.81 times higher than those of Pt/CNT-rGO and Pt/C(JM) catalysts, respectively. The catalyst also exhibited a more positive onset potential (1.03 V), higher mass activity (151.3 mA·mgPt –1), and better cyclic stability and tolerance in MOR than ORR. The catalyst mainly exhibited a 4e-transfer mechanism with a low peroxide yield. The high activity was closely related to hybrid structure. That is, the 3D framework provided a favorable path for mass-transfer, the CNT-rGO support was favorable for charge transfer, and strongly coupled Pt–WN can enhance the catalytic activity and CO-tolerance of Pt. Pt–WN/CNT-rGO represents a new 3D catalytic platform that is promising as an electrocatalyst for DMFC because it can catalyze both ORR and MOR in an acidic medium with good stability and highly efficient Pt utilization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700