用户名: 密码: 验证码:
Catalytic Pyrolysis/Gasification of Refuse Derived Fuel for Hydrogen Production and Tar Reduction: Influence of Nickel to Citric Acid Ratio Using Ni/SiO2 Catalysts
详细信息    查看全文
  • 作者:Paula H. Blanco (1)
    Chunfei Wu (1)
    Jude A. Onwudili (1)
    Valerie Dupont (1)
    Paul T. Williams (1)
  • 关键词:Tar ; Nickel ; Pyrolysis ; Gasification ; RDF
  • 刊名:Waste and Biomass Valorization
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:5
  • 期:4
  • 页码:625-636
  • 全文大小:586 KB
  • 参考文献:1. Choudhary, T.V., Choudhary, V.R.: Energy-efficient syngas production through, catalytic oxy-methane reforming reactions. Angew. Chem. Int. Edit. 47(10), 1828-847 (2008). doi:10.1002/anie.200701237 CrossRef
    2. Edwards, P.P., Kuznetsov, V.L., David, W.I.F.: Hydrogen energy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1853), 1043-056 (2007). doi:10.1098/rsta.2006.1965 CrossRef
    3. Dalai, A.K., Batta, N., Eswaramoorthi, I., Schoenau, G.J.: Gasification of refuse derived fuel in a fixed bed reactor for syngas production. Waste Manage. 29(1), 252-58 (2009). doi:10.1016/j.wasman.2008.02.009 CrossRef
    4. Belgiorno, V., De Feo, G., Della Rocca, C., Napoli, R.M.A.: Energy from gasification of solid wastes. Waste Manage. 23(1), 1-5 (2003). doi:10.1016/s0956-053x(02)00149-6 CrossRef
    5. Li, J.F., Liao, S.Y., Dan, W.Y., Jia, K.L., Zhou, X.R.: Experimental study on catalytic steam gasification of municipal solid waste for bioenergy production in a combined fixed bed reactor. Biomass Bioenergy 46, 174-80 (2012) CrossRef
    6. Devi, L., Ptasinski, K.J., Janssen, F.J.J.G.: A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24(2), 125-40 (2003). doi:10.1016/s0961-9534(02)00102-2 CrossRef
    7. Neeft, J.P.A., Knoef, H.A.M., Onaji, P., Nederland, S.E.C., Group, B.B.T.: Behaviour of tar in biomass gasification systems: tar related problems and their solutions. Novem (1999)
    8. Abu El-Rub, Z., Bramer, E.A., Brem, G.: Review of catalysts for Tar elimination in biomass gasification processes. Ind. Eng. Chem. Res. 43(22), 6911-919 (2004) CrossRef
    9. Caballero, M.A., Corella, J., Aznar, M.P., Gil, J.: Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts. Ind. Eng. Chem. Res. 39(5), 1143-154 (2000) CrossRef
    10. Miccio, F., Moersch, O., Spliethoff, H., Hein, K.R.G.: Generation and conversion of carbonaceous fine particles during bubbling fluidised bed gasification of a biomass fuel. Fuel 78(12), 1473-481 (1999) CrossRef
    11. Li, C., Suzuki, K.: Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renew. Sustain. Energy Rev. 13(3), 594-04 (2009). doi:10.1016/j.rser.2008.01.009 CrossRef
    12. Simell, P., St?hlberg, P., Kurkela, E., Albrecht, J., Deutsch, S., Sj?str?m, K.: Provisional protocol for the sampling and analysis of tar and particulates in the gas from large-scale biomass gasifiers. Version 1998. Biomass Bioenergy 18(1), 19-8 (2000). doi:10.1016/s0961-9534(99)00064-1 CrossRef
    13. Neeft, J.P.A., Knoef, H.A.M., Zielke, U., Sjostrom, K., Hasler, P., Simell, P.A.: Guideline for sampling and analysis of tar and particles in biomass producer gases. In: Tar Protocol. ECN ERK-CT1999-2002, Pette, Nederland (1999)
    14. DD CEN/TS 15439 Biomass Gasification—Tar And Particles In Product Gases—Sampling And Analysis. In: CEN Technical Specification, (2006)
    15. Adegoroye, A., Paterson, N., Li, X., Morgan, T., Herod, A.A., Dugwell, D.R., Kandiyoti, R.: The characterisation of tars produced during the gasification of sewage sludge in a spouted bed reactor. Fuel 83(14-5), 1949-960 (2004). doi:10.1016/j.fuel.2004.04.006 CrossRef
    16. Andersson, K., Levin, J.-O., Nilsson, C.-A.: Sampling and analysis of particulate and gaseous polycyclic aromatic hydrocarbons from coal tar sources in the working environment. Chemosphere 12(2), 197-07 (1983). doi:10.1016/0045-6535(83)90162-5 CrossRef
    17. Baumhakl, C., Karellas, S.: Tar analysis from biomass gasification by means of online fluorescence spectroscopy. Opt. Lasers Eng. 49(7), 885-91 (2011). doi:10.1016/j.optlaseng.2011.02.015 CrossRef
    18. Li, J., Yan, R., Xiao, B., Liang, D.T., Du, L.: Development of Nano-NiO/Al2O3 catalyst to be used for tar removal in biomass gasification. Environ. Sci. Technol. 42(16), 6224-229 (2008). doi:10.1021/es800138r CrossRef
    19. Sutton, D., Kelleher, B., Ross, J.R.H.: Review of literature on catalysts for biomass gasification. Fuel Process. Technol. 73(3), 155-73 (2001). doi:10.1016/s0378-3820(01)00208-9 CrossRef
    20. Bangala, D.N., Abatzoglou, N., Martin, J.-P., Chornet, E.: Catalytic gas conditioning: application to biomass and waste gasification. Ind. Eng. Chem. Res. 36(10), 4184-192 (1997). doi:10.1021/ie960785a CrossRef
    21. Wu, C.F., Williams, P.T.: A novel Nano-Ni/SiO(2) catalyst for hydrogen production from steam reforming of ethanol. Environ. Sci. Technol. 44(15), 5993-998 (2010). doi:10.1021/Es100912w CrossRef
    22. Blanco, P.H., Wu, C., Onwudili, J.A., Williams, P.T.: Characterization of tar from the pyrolysis/gasification of refuse derived fuel: influence of process parameters and catalysis. Energy Fuels 26(4), 2107-115 (2012). doi:10.1021/ef300031j CrossRef
    23. Park, H.J., Park, S.H., Sohn, J.M., Park, J., Jeon, J.-K., Kim, S.-S., Park, Y.-K.: Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts. Bioresour. Technol. 101(1, Supplement), S101–S103 (2010). doi:10.1016/j.biortech.2009.03.036 CrossRef
    24. Taylor, A.D., DiLeo, G.J., Sun, K.: Hydrogen production and performance of nickel based catalysts synthesized using supercritical fluids for the gasification of biomass. Appl. Catal. B 93(1-), 126-33 (2009). doi:10.1016/j.apcatb.2009.09.021 CrossRef
    25. Sutton, D., Kelleher, B., Doyle, A., Ross, J.R.H.: Investigation of nickel supported catalysts for the upgrading of brown peat derived gasification products. Bioresour. Technol. 80(2), 111-16 (2001) CrossRef
    26. Li, J., Liu, J., Liao, S., Zhou, X., Yan, R.: Syn-gas production from catalytic steam gasification of municipal solid wastes in a combined fixed bed reactor. In: International Conference on Intelligent System Design and Engineering Application 2010, pp. 530-34.
    27. Kim, P., Kim, Y., Kim, H., Song, I.K., Yi, J.: Synthesis and characterization of mesoporous alumina with nickel incorporated for use in the partial oxidation of methane into synthesis gas. Appl. Catal. A 272(1-), 157-66 (2004). doi:10.1016/j.apcata.2004.05.055 CrossRef
    28. Goncalves, G., Lenzi, M.K., Santos, O.A.A., Jorge, L.M.M.: Preparation and characterization of nickel based catalysts on silica, alumina and titania obtained by sol-gel method. J. Non-Cryst. Solids 352, 3697-704 (2006) CrossRef
    29. Wu, C., Williams, P.T.: Hydrogen production from steam reforming of ethanol with nano-Ni/SiO2 catalysts prepared at different Ni to citric acid ratios using a sol–gel method. Appl. Catal. B 102(1-), 251-59 (2011). doi:10.1016/j.apcatb.2010.12.005 CrossRef
    30. Tomiyama, S., Takahashi, R., Sato, S., Sodesawa, T., Yoshida, S.: Preparation of Ni/SiO2 catalyst with high thermal stability for CO2-reforming of CH4. Appl. Catal. A 241(1-), 349-61 (2003). doi:10.1016/s0926-860x(02)00493-3 CrossRef
    31. Takahashi, R., Sato, S., Sodesawa, T., Kawakita, M., Ogura, K.: High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid. J. Phys. Chem. B 104(51), 12184-2191 (2000). doi:10.1021/Jp002662g CrossRef
    32. Takahashi, R., Sato, S., Sodesawa, T., Suzuki, M., Ichikuni, N.: Ni/SiO2 prepared by sol-gel process using citric acid. Microporous Mesoporous Mater. 66(2-), 197-08 (2003). doi:10.1016/j.miromeso.2003.09.007 CrossRef
    33. Buah, W.K., Cunliffe, A.M., Williams, P.T.: Characterization of products from the pyrolysis of municipal solid waste. Process Saf. Environ. Prot. 85(5), 450-57 (2007). doi:10.1205/psep07024 CrossRef
    34. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984). Pure Appl. Chem. 57(4), 603-19 (1985) CrossRef
    35. Rouquerol, F., Rouquerol, J., Sing, K.S.W.: Adsorption by powders and porous solids. Academic Press, London (1999)
    36. Kim, J.-W., Mun, T.-Y., Kim, J.-O., Kim, J.-S.: Air gasification of mixed plastic wastes using a two-stage gasifier for the production of producer gas with low tar and a high caloric value. Fuel 90(6), 2266-272 (2011). doi:10.1016/j.fuel.2011.02.021 CrossRef
    37. Pinto, F., André, R.N., Franco, C., Lopes, H., Gulyurtlu, I., Cabrita, I.: Co-gasification of coal and wastes in a pilot-scale installation 1: effect of catalysts in syngas treatment to achieve tar abatement. Fuel 88(12), 2392-402 (2009). doi:10.1016/j.fuel.2008.12.012 CrossRef
    38. Blanco, P.H., Wu, C., Onwudili, J.A., Williams, P.T.: Characterization and evaluation of Ni/SiO2 catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel. Appl. Catal. B Environ. 134-35, 238-50 (2013). doi:10.1016/j.apcatb.2013.01.016 CrossRef
    39. Han, J., Kim, H.: The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew. Sustain. Energy Rev. 12(2), 397-16 (2008). doi:10.1016/j.rser.2006.07.015 CrossRef
    40. Wolfesberger-Schwabl, U., Aigner, I., Hofbaur, H.: Mechanism of tar generation during fluidized bed gasification and low temperature pyrolysis. Ind. Eng. Chem. Res. 51, 13001-3007 (2012). doi:10.1021/ie300827d CrossRef
    41. Hernandez, J.J., Ballesteros, R., Aranda, G.: Characterisation of tars from biomass gasification: effect of the operating conditions. Energy 50, 333-42 (2013). doi:10.1016/j.energy.2012.12.005 CrossRef
    42. Abu El-Rub, Z., Bramer, E.A., Brem, G.: Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel 87(10-1), 2243-252 (2008). doi:10.1016/j.fuel.2008.01.004 CrossRef
    43. Matas Güell, B., Babich, I.V., Lefferts, L., Seshan, K.: Steam reforming of phenol over Ni-based catalysts—a comparative study. Appl. Catal. B Environ. 106(3-), 280-86 (2011). doi:10.1016/j.apcatb.2011.05.012 CrossRef
    44. Larsen, E., Egsgaard, H., Pedersen, K., Zielke, U., Brandt, P.: Tar compounds in condensates from different types of gasifiers. In: Kyritsis, S. (ed.) 1st World Conference on Biomass for Energy and Industry, Sevilla, Spain, 5- June 2000, p. 2137. James & James (Science Publishers) Ltd
    45. Wu, C., Williams, P.T.: Hydrogen production by steam gasification of polypropylene with various nickel catalysts. Appl. Catal. B 87(3-), 152-61 (2009). doi:10.1016/j.apcatb.2008.09.003 CrossRef
    46. Wu, C., Williams, P.T.: Investigation of coke formation on Ni–Mg–Al catalyst for hydrogen production from the catalytic steam pyrolysis-gasification of polypropylene. Appl. Catal. B 96(1-), 198-07 (2010). doi:10.1016/j.apcatb.2010.02.022 CrossRef
    47. Devi, L., Ptasinski, K.J., Janssen, F.J.J.G.: Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar. Fuel Process. Technol. 86(6), 707-30 (2005). doi:10.1016/j.fuproc.2004.07.001 CrossRef
    48. Wang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Zhang, L., Luo, T., Tan, C.: Renewable hydrogen production from steam reforming of glycerol by Ni–Cu–Al, Ni–Cu–Mg, Ni–Mg catalysts. Int. J. Hydrogen Energy 38(9), 3562-571 (2013). doi:10.1016/j.ijhydene.2013.01.042 CrossRef
  • 作者单位:Paula H. Blanco (1)
    Chunfei Wu (1)
    Jude A. Onwudili (1)
    Valerie Dupont (1)
    Paul T. Williams (1)

    1. Energy Research Institute, University of Leeds, Leeds, LS2 9JT, UK
  • ISSN:1877-265X
文摘
Gasification technology is an attractive alternative for the thermal treatment of solid wastes, producing a high energy value hydrogen rich syngas. The presence of tar in the produced gas diminishes its quality and potential use in further processes; for this reason the reduction of tar in waste gasification is a major challenge. In this work the pyrolysis/gasification of refuse derived fuel (RDF) from municipal solid wastes, was investigated using a two-stage reaction system with Ni/SiO2 catalysts prepared by a sol–gel method varying the citric acid concentration (CA). The fresh and reacted catalysts were characterised for surface area and pore size distribution, temperature programmed oxidation, and high resolution scanning electron microscopy. The effect of the nickel to citric acid ratio (Ni:CA) was evaluated in terms of the characteristics and performance of the Ni/SiO2 catalysts. The results showed that the prepared Ni/SiO2 catalysts exhibited a relatively high surface area and an increase in pore size distribution as the Ni:CA ratio was increased. The efficiency of the prepared catalysts on tar reduction and hydrogen production was examined during the pyrolysis/gasification of RDF; the results were compared with a blank experiment using a bed of sand. The tar fraction was quantified using gas chromatography/mass spectrometry. A low tar concentration of ~0.2 mgtar/gRDF was attained using the catalysts with Ni:CA ratios of 1:1 and 1:3; additionally a high hydrogen concentration (58 vol%), and low CH4 (2.2 vol%) and C2–C4 concentrations (0.8 vol%), were attained using the catalyst with a Ni:CA ratio of 1:3. A higher tar concentration of ~1.7 mgtar/gRDF was attained using the bed of sand, while the hydrogen production was remarkably decreased. The major tar compounds identified in the tar samples using the Ni/SiO2 catalysts were phenol, cresols, naphthalene, fluorene, and phenanthrene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700