用户名: 密码: 验证码:
miR-31 is consistently inactivated in EBV-associated nasopharyngeal carcinoma and contributes to its tumorigenesis
详细信息    查看全文
  • 作者:Chartia Ching-Mei Cheung (1)
    Grace Tin-Yun Chung (1)
    Samantha Wei-Man Lun (1)
    Ka-Fai To (1) (2)
    Kwong-Wai Choy (3)
    Kin-Mang Lau (1)
    Sharie Pui-Kei Siu (1)
    Xin-Yuan Guan (4)
    Roger Kai-Cheong Ngan (5)
    Timothy Tak-Chun Yip (5)
    Pierre Busson (6)
    Sai-Wah Tsao (7)
    Kwok-Wai Lo (1) (2)

    1. Department of Anatomical and Cellular Pathology
    ; State Key Laboratory in Oncology in South China ; Prince of Wales Hospital ; The Chinese University of Hong Kong ; Hong Kong ; People鈥檚 Republic of China
    2. Li Ka Shing Institute of Health Science
    ; The Chinese University of Hong Kong ; Hong Kong ; People鈥檚 Republic of China
    3. Department of Obstetrics and Gynecology
    ; Prince of Wales Hospital ; The Chinese University of Hong Kong ; Hong Kong ; People鈥檚 Republic of China
    4. Department of Clinical Oncology
    ; University of Hong Kong ; Hong Kong ; People鈥檚 Republic of China
    5. Department of Clinical Oncology
    ; Queen Elizabeth Hospital ; Hong Kong ; People鈥檚 Republic of China
    6. CNRS-UMR 8126 and Institut de canc茅rologie Gustave Roussy
    ; Universit茅 Paris-Sud-11 ; 39 rue Camille Desmoulins ; F-94805 ; Villejuif ; France
    7. Department of Anatomy
    ; University of Hong Kong ; Hong Kong ; People鈥檚 Republic of China
  • 关键词:Nasopharyngeal carcinoma ; MicroRNA ; miR ; 31 ; FIH1 ; MCM2
  • 刊名:Molecular Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:5,123 KB
  • 参考文献:1. Bartel, DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: pp. 281-297 CrossRef
    2. He, L, Hannon, GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5: pp. 522-531 CrossRef
    3. Farazi, TA, Spitzer, JI, Morozov, P, Tuschl, T (2011) miRNAs in human cancer. J Pathol 223: pp. 102-115 CrossRef
    4. Lo, AK, Dawson, CW, Jin, DY, Lo, KW (2012) The pathological roles of BART miRNAs in nasopharyngeal carcinoma. J Pathol 227: pp. 392-403 CrossRef
    5. Lo, KW, Teo, PM, Hui, AB, To, KF, Tsang, YS, Chan, SY, Mak, KF, Lee, JC, Huang, DP (2000) High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res 60: pp. 3348-3353
    6. Hui, AB, Lo, KW, Leung, SF, Teo, P, Fung, MK, To, KF, Wong, N, Choi, PH, Lee, JC, Huang, DP (1999) Detection of recurrent chromosomal gains and losses in primary nasopharyngeal carcinoma by comparative genomic hybridisation. Int J Cancer 82: pp. 498-503 CrossRef
    7. Ivanov, SV, Goparaju, CM, Lopez, P, Zavadil, J, Toren-Haritan, G, Rosenwald, S, Hoshen, M, Chajut, A, Cohen, D, Pass, HI (2010) Pro-tumorigenic effects of miR-31 loss in mesothelioma. J Biol Chem 285: pp. 22809-22817 CrossRef
    8. Lin, PC, Chiu, YL, Banerjee, S, Park, K, Mosquera, JM, Giannopoulou, E, Alves, P, Tewari, AK, Gerstein, MB, Beltran, H, Melnick, AM, Elemento, O, Demichelis, F, Rubin, MA (2013) Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res 73: pp. 1232-1244 CrossRef
    9. Valastyan, S, Reinhardt, F, Benaich, N, Calogrias, D, Sz谩sz, AM, Wang, ZC, Brock, JE, Richardson, AL, Weinberg, RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137: pp. 1032-1046 CrossRef
    10. Creighton, CJ, Fountain, MD, Yu, Z, Nagaraja, AK, Zhu, H, Khan, M, Olokpa, E, Zariff, A, Gunaratne, PH, Matzuk, MM, Anderson, ML (2010) Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res 70: pp. 1906-1915 CrossRef
    11. Lo, KW, Huang, DP, Lau, KM (1995) p16 gene alterations in nasopharyngeal carcinoma. Cancer Res 55: pp. 2039-2043
    12. Asangani, IA, Harms, PW, Dodson, L, Pandhi, M, Kunju, LP, Maher, CA, Fullen, DR, Johnson, TM, Giordano, TJ, Palanisamy, N, Chinnaiyan, AM (2012) Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget 3: pp. 1011-1025
    13. Zhang, Y, Guo, J, Li, D, Xiao, B, Miao, Y, Jiang, Z, Zhuo, H (2010) Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. Med Oncol 27: pp. 685-689 CrossRef
    14. Cheung, FM, Pang, SW, Yau, TK, Chow, SK, Lo, KW (2004) Nasopharyngeal intraepithelial lesion: latent Epstein-Barr virus infection with malignant potential. Histopathology 45: pp. 171-179 CrossRef
    15. Tsang, CM, Yip, YL, Lo, KW, Deng, W, To, KF, Hau, PM, Lau, VM, Takada, K, Lui, VW, Lung, ML, Chen, H, Zeng, M, Middeldorp, JM, Cheung, AL, Tsao, SW (2012) Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. Proc Natl Acad Sci U S A 109: pp. E3473-3482 CrossRef
    16. Lo, KW, Huang, DP (2002) Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin Cancer Biol 12: pp. 451-462 CrossRef
    17. Augoff, K, McCue, B, Plow, EF, Sossey-Alaoui, K (2012) miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer 11: pp. 5 CrossRef
    18. Lau, KM, Chan, QK, Pang, JC, Ma, FM, Li, KK, Yeung, WW, Cheng, AS, Feng, H, Chung, NY, Li, HM, Zhou, L, Wang, Y, Mao, Y, Ng, HK (2010) Minichromosome maintenance proteins 2, 3 and 7 in medulloblastoma: overexpression and involvement in regulation of cell migration and invasion. Oncogene 29: pp. 5475-5489 CrossRef
    19. Pelletier, J, Dayan, F, Durivault, J, Ilc, K, P茅cou, E, Pouyss茅gur, J, Mazure, NM (2012) The asparaginyl hydroxylase factor-inhibiting HIF is essential for tumor growth through suppression of the p53-p21 axis. Oncogene 31: pp. 2989-3001 CrossRef
    20. Lo, KW, Kwong, J, Hui, AB, Chan, SY, To, KF, Chan, AS, Chow, LS, Teo, PM, Johnson, PJ, Huang, DP (2001) High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res 61: pp. 3877-3881
    21. Flores, JF, Walker, GJ, Glendening, JM, Haluska, FG, Castresana, JS, Rubio, MP, Pastorfide, GC, Boyer, LA, Kao, WH, Bulyk, ML, Barnhill, RL, Hayward, NK, Housman, DE, Fountain, JW (1996) Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res 56: pp. 5023-5032
    22. Veerla, S, Lindgren, D, Kvist, A, Frigyesi, A, Staaf, J, Persson, H, Liedberg, F, Chebil, G, Gudjonsson, S, Borg, A, M氓nsson, W, Rovira, C, H枚glund, M (2009) MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer 124: pp. 2236-2242 CrossRef
    23. Yamagishi, M, Nakano, K, Miyake, A, Yamochi, T, Kagami, Y, Tsutsumi, A, Matsuda, Y, Sato-Otsubo, A, Muto, S, Utsunomiya, A, Yamaguchi, K, Uchimaru, K, Ogawa, S, Watanabe, T (2012) Polycomb-mediated loss of miR-31 activates NIK-dependent NF-魏B pathway in adult T cell leukemia and other cancers. Cancer Cell 21: pp. 121-135 CrossRef
    24. Fuse, M, Kojima, S, Enokida, H, Chiyomaru, T, Yoshino, H, Nohata, N, Kinoshita, T, Sakamoto, S, Naya, Y, Nakagawa, M, Ichikawa, T, Seki, N (2012) Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J Hum Genet 57: pp. 691-699 CrossRef
    25. Liu, Y, He, G, Wang, Y, Guan, X, Pang, X, Zhang, B (2013) MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells. Toxicol Lett 221: pp. 23-30 CrossRef
    26. Majid, S, Dar, AA, Saini, S, Chen, Y, Shahryari, V, Liu, J, Zaman, MS, Hirata, H, Yamamura, S, Ueno, K, Tanaka, Y, Dahiya, R (2010) Regulation of minichromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer. Cancer Res 70: pp. 2809-2818 CrossRef
    27. Liu, CJ, Tsai, MM, Hung, PS, Kao, SY, Liu, TY, Wu, KJ, Chiou, SH, Lin, SC, Chang, KW (2010) miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res 70: pp. 1635-1644 CrossRef
    28. Peng, H, Kaplan, N, Hamanaka, RB, Katsnelson, J, Blatt, H, Yang, W, Hao, L, Bryar, PJ, Johnson, RS, Getsios, S, Chandel, NS, Lavker, RM (2012) microRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation. Proc Natl Acad Sci U S A 109: pp. 14030-14034 CrossRef
    29. Khan, MN, Bhattacharyya, T, Andrikopoulos, P, Esteban, MA, Barod, R, Connor, T, Ashcroft, M, Maxwell, PH, Kiriakidis, S (2011) Factor inhibiting HIF (FIH-1) promotes renal cancer cell survival by protecting cells from HIF-1伪-mediated apoptosis. Br J Cancer 104: pp. 1151-1159 CrossRef
    30. Kondo, S, Seo, SY, Yoshizaki, T, Wakisaka, N, Furukawa, M, Joab, I, Jang, KL, Pagano, JS (2006) EBV latent membrane protein 1 up-regulates hypoxia-inducible factor 1alpha through Siah1-mediated down-regulation of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial cells. Cancer Res 66: pp. 9870-9877 CrossRef
    31. Tsao, SW, Wang, X, Liu, Y, Cheung, YC, Feng, H, Zheng, Z, Wong, N, Yuen, PW, Lo, AK, Wong, YC, Huang, DP (2002) Establishment of two immortalized nasopharyngeal epithelial cell lines using SV40 large T and HPV16E6/E7 viral oncogenes. Biochim Biophys Acta 1590: pp. 150-158 CrossRef
    32. Li, HM, Man, C, Jin, Y, Deng, W, Yip, YL, Feng, HC, Cheung, YC, Lo, KW, Meltzer, PS, Wu, ZG, Kwong, YL, Yuen, AP, Tsao, SW (2006) Molecular and cytogenetic changes involved in the immortalization of nasopharyngeal epithelial cells by telomerase. Int J Cancer 119: pp. 1567-1576 CrossRef
    33. Cheung, ST, Huang, DP, Hui, AB, Lo, KW, Ko, CW, Tsang, YS, Wong, N, Whitney, BM, Lee, JC (1999) Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. Int J Cancer 83: pp. 121-126 CrossRef
    34. Huang, DP, Ho, JH, Poon, YF, Chew, EC, Saw, D, Lui, M, Li, CL, Mak, LS, Lai, SH, Lau, WH (1980) Establishment of a cell line (NPC/HK1) from a differentiated squamous carcinoma of the nasopharynx. Int J Cancer 26: pp. 127-132 CrossRef
    35. Lo, AK, Lo, KW, Tsao, SW, Wong, HL, Hui, JW, To, KF, Hayward, DS, Chui, YL, Lau, YL, Takada, K, Huang, DP (2006) Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells. Neoplasia 8: pp. 173-180 CrossRef
    36. Busson, P, Ganem, G, Flores, P, Mugneret, F, Clausse, B, Caillou, B, Braham, K, Wakasugi, H, Lipinski, M, Tursz, T (1988) Establishment and characterization of three transplantable EBV-containing nasopharyngeal carcinomas. Int J Cancer 42: pp. 599-606 CrossRef
    37. Huang, DP, Ho, JH, Chan, WK, Lau, WH, Lui, M (1989) Cytogenetics of undifferentiated nasopharyngeal carcinoma xenografts from southern Chinese. Int J Cancer 43: pp. 936-939 CrossRef
    38. Lun, SW, Cheung, ST, Cheung, PF, To, KF, Woo, JK, Choy, KW, Chow, C, Cheung, CC, Chung, GT, Cheng, AS, Ko, CW, Tsao, SW, Busson, P, Ng, MH, Lo, KW (2012) CD44+ cancer stem-like cells in EBV-associated nasopharyngeal carcinoma. PLoS One 7: pp. e52426 CrossRef
    39. Kwong, J, Lo, KW, To, KF, Teo, PM, Johnson, PJ, Huang, DP (2002) Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res 8: pp. 131-137
    40. Chow, LS, Lo, KW, Kwong, J, Wong, AY, Huang, DP (2004) Aberrant methylation of RASSF4/AD037 in nasopharyngeal carcinoma. Oncol Rep 12: pp. 781-787
    41. Chung, GT, Lung, RW, Hui, AB, Yip, KY, Woo, JK, Chow, C, Tong, CY, Lee, SD, Yuen, JW, Lun, SW, Tso, KK, Wong, N, Tsao, SW, Yip, TT, Busson, P, Kim, H, Seo, JS, O鈥橲ullivan, B, Liu, FF, To, KF, Lo, KW (2013) Identification of a recurrent transforming UBR5-ZNF423 fusion gene in EBV-associated nasopharyngeal carcinoma. J Pathol 231: pp. 158-167 CrossRef
    42. Lo, AK, Huang, DP, Lo, KW, Chui, YL, Li, HM, Pang, JC, Tsao, SW (2004) Phenotypic alterations induced by the Hong Kong-prevalent Epstein-Barr virus-encoded LMP1 variant (2117-LMP1) in nasopharyngeal epithelial cells. Int J Cancer 109: pp. 919-925 CrossRef
    43. Chung, GT, Lou, WP, Chow, C, To, KF, Choy, KW, Leung, AW, Tong, CY, Yuen, JW, Ko, CW, Yip, TT, Busson, P, Lo, KW (2013) Constitutive activation of distinct NF-魏B signals in EBV-associated nasopharyngeal carcinoma. J Pathol 231: pp. 311-322 CrossRef
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1476-4598
文摘
Background As a distinctive type of head and neck cancers, nasopharyngeal carcinoma (NPC) is genesis from the clonal Epstein-Barr virus (EBV)-infected nasopharyngeal epithelial cells accumulated with multiple genetic lesions. Among the recurrent genetic alterations defined, loss of 9p21.3 is the most frequent early event in the tumorigenesis of EBV-associated NPC. In addition to the reported CDKN2A/p16, herein, we elucidated the role of a miRNA, miR-31 within this 9p21.3 region as NPC-associated tumor suppressor. Methods The expression and promoter methylation of miR-31 were assessed in a panel of NPC tumor lines and primary tumors. Its in vitro and in vivo tumor suppression function was investigated through the ectopic expression of miR-31 in NPC cells. We also determined the miR-31 targeted genes and its involvement in the growth in NPC. Results Downregulation of miR-31 expression was detected in almost all NPC cell line, patient-derived xenografts (PDXs) and primary tumors. Both homozygous deletion and promoter hypermethylation were shown to be major mechanisms for miR-31 silencing in this cancer. Strikingly, loss of miR-31 was also obviously observed in the dysplastic lesions of nasopharynx. Restoration of miR-31 in C666-1 cells inhibited the cell proliferation, colony-forming and migratory capacities. Dramatic reduction of in vitro anchorage-independent growth and in vivo tumorigenic potential were demonstrated in the stable clones expressing miR-31. Furthermore, we proved that miR-31 suppressed the NPC cell growth via targeting FIH1 and MCM2. Conclusions The findings provide strong evidence to support miR-31 as a new NPC-associated tumor suppressor on 9p21.3 region. The inactivation of miR-31 may contribute to the early development of NPC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700