用户名: 密码: 验证码:
Multiscale Support Vector Approach for Solving Ill-Posed Problems
详细信息    查看全文
  • 作者:Min Zhong ; Yiu Chung Hon ; Shuai Lu
  • 关键词:Multiscale support vector approach ; Compactly supported radial basis functions ; Ill ; posed problems ; Regularization methods ; 45Q05 ; 47A52 ; 65J20
  • 刊名:Journal of Scientific Computing
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:64
  • 期:2
  • 页码:317-340
  • 全文大小:767 KB
  • 参考文献:1.Aronszajn, N.: Theory of reproducing Kernels. Trans. Am. Math. Soc. 68, 337-04 (1950)MATH MathSciNet View Article
    2.Bertero, M., De Mol, C., Pike, E.: Linear inverse problems with discrete data I: general formulation and sigular system analysis. Inverse Probl. 1, 301-30 (1985)MATH View Article
    3.Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers COLT 92. In: Proceedings of 5th Annual Workshop on Computational Learning Theory, pp. 144-52. ACM, New York (1992)
    4.Burger, M., Engl, H.: Training neural networks with noisy data as an ill-posed problem. Adv. Comput. Math. 13, 335-54 (2000)MATH MathSciNet View Article
    5.Chen, Z., Xu, Y., Yang, H.: A multilevel augmentation method for solving ill-posed operator equations. Inverse Probl. 22, 155-74 (2006)MATH MathSciNet View Article
    6.Chernih, A., Le Gia, Q.T.: Multiscale methods with compactly supported radial basis functions for Galerkin approximation of elliptic PDEs, Math.NA, submitted
    7.Chernih, A., Le Gia, Q.T.: Multiscale methods with compactly supported radial basis functions for the Stokes problem on bounded domains, Math.NA, submitted
    8.Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273-97 (1995)MATH
    9.Christianini, N., Shawe-Taylor, J.: Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)View Article
    10.Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (1996)MATH View Article
    11.Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Méhauté, A.L., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 131-38. Vanderbilt University Press, Nashville (1997)
    12.Franke, C., Schaback, R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93, 73-2 (1998)MATH MathSciNet View Article
    13.Giesl, P., Wendland, H.: Meshless collocation: error estimates with application to dynamical systems. SIAM J. Numer. Anal. 45, 1723-741 (2007)MATH MathSciNet View Article
    14.Harbrecht, H., Pereverzev, S.V., Schneider, R.: Self-regularization by projection for noisy pseudodifferential equations of negative order. Numer. Math. 95, 123-43 (2003)MATH MathSciNet View Article
    15.Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. Geophys. Res. 76, 1905-915 (1971)View Article
    16.Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009)MATH View Article
    17.Hickernell, F.J., Hon, Y.C.: Radial basis function approximations as smoothing splines. Appl. Math. Comput. 102, 1-4 (1999)MATH MathSciNet View Article
    18.Hon, Y.C., Schaback, R.: Solvability of partial differential equations by meshless kernel methods. Adv. Comput. Math. 28, 283-99 (2008)MATH MathSciNet View Article
    19.Hon, Y.C., Wei, T.: Backus-Gilbert algorithm for the Cauchy problem of the Laplace equation. Inverse Probl. 17, 261-71 (2001)MATH MathSciNet View Article
    20.Takeuchi, T., Hon, Y.C.: Discretized Tikhonov regularization by reproducing kernel Hilbert space for backward heat conduction problem. Adv. Comput. Math. 34, 167-83 (2011)MATH MathSciNet View Article
    21.Kansa, E.J.: Application of Hardy’s multiquadric interpolation to hydrodynamics. Proc. Simul. Conf. 4(1986), 111-17 (1986)
    22.Kirsch, A., Schomburg, B., Berendt, G.: The Backus–Gilbert method. Inverse Probl. 4, 771-83 (1988)MATH MathSciNet View Article
    23.Krebs, J.: Support vector regression for the solution of linear integral equations. Inverse Probl. 27(065007), 23 (2011)
    24.Krebs, J., Louis, A.K., Wendland, H.: Sobolev error estimates and a priori parameter selection for semi-discrete Tikhonov regularization. J. Inverse Ill-Posed Probl. 17, 845-69 (2009)MATH MathSciNet View Article
    25.Le Gia, Q.T., Sloan, I., Wendland, H.: Multiscale analysis in Sobolev spaces on the sphere. SIAM J. Numer. Anal. 48, 2065-090 (2010)MATH MathSciNet View Article
    26.Le Gia, Q.T., Sloan, I., Wendland, H.: Multiscale RBF collocation for solving PDEs on spheres. Numer. Math. 121, 99-25 (2012)MATH MathSciNet View Article
    27.Le Gia, Q.T., Sloan, I., Wendland, H.: Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere. Appl. Comput. Harmon. Anal. 32, 401-12 (2012)MATH MathSciNet View Article
    28.Louis, A.K.: Inverse und Schlecht Gestellte Probleme. B. G. Teubner, Stuttgart (1989)MATH View Article
    29.Li, J., Zou, J.: A multilevel model correction method for parameter identification. Inverse Probl. 23, 1759-786 (2007)MATH MathSciNet View Article
    30.Lu, S., Pereverzev, S.V.: Regularization theory for ill-posed problems. Selected Topics. Inverse and Ill-posed Problems Series, 58. De Gruyter, Berlin (2013)
    31.Micche
  • 作者单位:Min Zhong (1)
    Yiu Chung Hon (2)
    Shuai Lu (3)

    1. Department of Mathematics, Southeast University, Nanjing, 210096, China
    2. Department of Mathematics, City University of Hong Kong, Hong Kong SAR, China
    3. School of Mathematical Sciences, Fudan University, Shanghai, 200433, China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algorithms
    Computational Mathematics and Numerical Analysis
    Applied Mathematics and Computational Methods of Engineering
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1573-7691
文摘
Based on the use of compactly supported radial basis functions, we extend in this paper the support vector approach to a multiscale support vector approach (MSVA) scheme for approximating the solution of a moderately ill-posed problem on bounded domain. The Vapnik’s \(\epsilon \)-intensive function is adopted to replace the standard \(l^2\) loss function in using the regularization technique to reduce the error induced by noisy data. Convergence proof for the case of noise-free data is then derived under an appropriate choice of the Vapnik’s cut-off parameter and the regularization parameter. For noisy data case, we demonstrate that a corresponding choice for the Vapnik’s cut-off parameter gives the same order of error estimate as both the a posteriori strategy based on discrepancy principle and the noise-free a priori strategy. Numerical examples are constructed to verify the efficiency of the proposed MSVA approach and the effectiveness of the parameter choices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700