用户名: 密码: 验证码:
Effect of Different Carbon Substrates on the Removal of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) and Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX) by Anaerobic Mesophilic Granular Sludge
详细信息    查看全文
  • 作者:Chunjiang An ; Yarong Shi ; Yanling He ; Guohe Huang…
  • 关键词:Hexahydro ; 1 ; 3 ; 5 ; trinitro ; 1 ; 3 ; 5 ; triazine (RDX) ; Octahydro ; 1 ; 3 ; 5 ; 7 ; tetranitro ; 1 ; 3 ; 5 ; 7 ; tetrazocine (HMX) ; Degradation ; Mesophilic anaerobic granules ; Carbon substrates
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:225
  • 期:11
  • 全文大小:584 KB
  • 参考文献:1. Adrian, N. R., & Arnett, C. M. (2006). Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) serves as a carbon and energy source for a mixed culture under anaerobic conditions. / Current Microbiology, 53, 129-34. CrossRef
    2. Adrian, N. R., Arnett, C. M., & Hickey, R. F. (2003). Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen. / Water Research, 37, 3499-507. CrossRef
    3. An, C. J., He, Y. L., Huang, G. H., & Liu, Y. H. (2010a). Performance of mesophilic anaerobic granules for removal of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from aqueous solution. / Journal of Hazardous Materials, 179, 526-32. CrossRef
    4. An, C. J., He, Y. L., Huang, G. H., & Yang, S. C. (2010b). Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by anaerobic mesophilic granular sludge from a UASB reactor. / Journal of Chemical Technology and Biotechnology, 85, 831-38. CrossRef
    5. Annamaria, H., Manno, D., Strand, S. E., Bruce, N. C., & Hawari, J. (2010). Biodegradation of RDX and MNX with / Rhodococcus sp. strain DN22: new insights into the degradation pathway. / Environmental Science & Technology, 44, 9330-336. CrossRef
    6. APHA. (1998). / Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.
    7. Astratinei, V., van Hullebusch, E., & Lens, P. (2006). Bioconversion of selenate in methanogenic anaerobic granular sludge. / Journal of Environmental Quality, 35, 1873-883. CrossRef
    8. Aulenta, F., Gossett, J. M., Papini, M. P., Rossetti, S., & Majone, M. (2005). Comparative study of methanol, butyrate, and hydrogen as electron donors for long-term dechlorination of tetrachloroethene in mixed anerobic cultures. / Biotechnology and Bioengineering, 91, 743-53. CrossRef
    9. Baczynski, T. P., Grotenhuis, T., & Knipscheer, P. (2004). The dechlorination of cyclodiene pesticides by methanogenic granular sludge. / Chemosphere, 55, 653-59. CrossRef
    10. Beller, H. R. (2002). Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor. / Water Research, 36, 2533-540. CrossRef
    11. Bhatt, M., Zhao, J. S., Halasz, A., & Hawari, J. (2006). Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment. / Journal of Industrial Microbiology & Biotechnology, 33, 850-58. CrossRef
    12. Boopathy, R. (2001). Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition. / Bioresource Technology, 76, 241-44. CrossRef
    13. Chen, D., Liu, Z. L., & Banwart, W. (2011). Concentration-dependent RDX uptake and remediation by crop plants. / Environmental Science and Pollution Research, 18, 908-17. CrossRef
    14. Chipasa, K. B., & M?drzycka, K. (2006). Behavior of lipids in biological wastewater treatment processes. / Journal of Industrial Microbiology and Biotechnology, 33, 635-45. CrossRef
    15. Collins, G., Foy, C., McHugh, S., & O-Flaherty, V. (2005). Anaerobic treatment of 2,4,6-trichlorophenol in an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor at 15 °C. / FEMS Microbiology Ecology, 53, 167-78. CrossRef
    16. Doong, R. A., & Chang, S. M. (2000). Relationship between electron donor and microorganism on the dechlorination of carbon tetrachloride by an anaerobic enrichment culture. / Chemosphere, 40, 1427-433. CrossRef
    17. Doong, R. A., & Chen, T. F. (1996). Anaerobic degradation of 1,1,1-trichloroethane with the amendment of different substrate and microbial concentrations. / Chemosphere, 32, 2003-014. CrossRef
    18. dos Santos, A. B., Cervantes, F. J., & van Lier, J. B. (2004). Azo dye reduction by thermophilic anaerobic granular sludge, and the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) on the reductive biochemical transformation. / Applied Microbiology and Biotechnology, 64, 62-9. CrossRef
    19. Fiorella, P. D., & Spain, J. C. (1997). Transformation of 2,4,6-trinitrotoluene by / Pseudomonas pseudoalcaligenes JS52. / Applied and Environmental Microbiology, 63, 2007-015.
    20. Gnanapragasam, G., Senthilkumar, M., Arutchelvan, V., Velayutham, T., & Nagarajan, S. (2011). Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor. / Bioresource Technology, 102, 627-32. CrossRef
    21. Hamer, G. (1997). Microbial consortia for multiple pollutant biodegradation. / Pure and Applied Chemistry, 69, 2343-356. CrossRef
    22. He, J. Z., Sung, Y., Dollhopf, M. E., Fathepure, B. Z., Tiedje, J. M., & Loffler, F. E. (2002). Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. / Environmental Science & Technology, 36, 3945-952. CrossRef
    23. Hwang, P., Chow, T., & Adrian, N. R. (2000). Transformation of trinitrotoluene to triaminotoluene by mixed cultures incubated under methanogenic conditions. / Environmental Toxicology and Chemistry, 19, 836-41. CrossRef
    24. Jayamani, I., Manzella, M., & Cupples, A. (2013). RDX degradation potential in soils previously unexposed to RDX and the identification of RDX-degrading species in one agricultural soil using stable isotope probing. / Water, Air, and Soil Pollution, 224, 1-5. CrossRef
    25. Kanekar, S. P., Kanekar, P. P., Sarnaik, S. S., Gujrathi, N. P., Shede, P. N., Kedargol, M. R., & Reardon, K. F. (2009). Bioremediation of nitroexplosive wastewater by an yeast isolate / Pichia sydowiorum MCM Y-3 in fixed film bioreactor. / Journal of Industrial Microbiology & Biotechnology, 36, 253-60. CrossRef
    26. Lettinga, G., Vanvelsen, A. F. M., Hobma, S. W., Dezeeuw, W., & Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater-treatment, especially for anaerobic treatment. / Biotechnology and Bioengineering, 22, 699-34. CrossRef
    27. Lim, S. J., & Kim, T.-H. (2014). Applicability and trends of anaerobic granular sludge treatment processes. / Biomass and Bioenergy, 60, 189-02. CrossRef
    28. Liu, Y. H., He, Y. L., Yang, S. C., & An, C. J. (2006). Studies on the expansion characteristics of the granular bed present in EGSB bioreactors. / Water SA, 32, 555-60.
    29. Liu, Q. L., Yan, X. H., Yin, X. M., Situ, B., Zhou, H. K., Lin, L., Li, B., Gan, N., & Zheng, L. (2013). Electrochemical enzyme-linked immunosorbent assay (ELISA) for alpha-fetoprotein based on glucose detection with multienzyme-nanoparticle amplification. / Molecules, 18, 12675-2686. CrossRef
    30. Lovanh, N., & Alvarez, P. J. J. (2004). Effect of ethanol, acetate, and phenol on toluene degradation activity and tod-lux expression in / Pseudomonas putida TOD102: evaluation of the metabolic flux dilution model. / Biotechnology and Bioengineering, 86, 801-08. CrossRef
    31. Lozano, C. J. S., Mendoza, M. V., de Arango, M. C., & Monroy, E. F. C. (2009). Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment. / Waste Management, 29, 704-11. CrossRef
    32. Mamma, D., Kalogeris, E., Papadopoulos, N., Hatzinikolaou, D. G., Christrakopoulos, P., & Kekos, D. (2004). Biodegradation of phenol by acclimatized / Pseudomonas putida cells using glucose as an added growth substrate. / Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 39, 2093-104. CrossRef
    33. Mukhi, S., Pan, X., Cobb, G. P., & Pati?o, R. (2005). Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval zebrafish ( / Danio rerio). / Chemosphere, 61, 178-85. CrossRef
    34. Oh, B. T., & Alvarez, P. J. J. (2002). Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation in biologically-active iron columns. / Water, Air, and Soil Pollution, 141, 325-35. CrossRef
    35. Oh, B. T., Just, C. L., & Alvarez, P. J. J. (2001). Hexahydro-1,3,5-trinitro-1,3,5-triazine mineralization by zerovalent iron and mixed anaerobic cultures. / Environmental Science & Technology, 35, 4341-346. CrossRef
    36. Oh, S. Y., Chiu, P. C., Kim, B. J., & Cha, D. K. (2003). Enhancing Fenton oxidation of TNT and RDX through pretreatment with zero-valent iron. / Water Research, 37, 4275-283. CrossRef
    37. Rooney-Varga, J. N., Anderson, R. T., Fraga, J. L., Ringelberg, D., & Lovley, D. R. (1999). Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. / Applied and Environmental Microbiology, 65, 3056-063.
    38. Ryan, P., Forbes, C., McHugh, S., O’Reilly, C., Fleming, G. T. A., & Colleran, E. (2010). Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions. / Water Research, 44, 4261-269. CrossRef
    39. Shen, D. S., Liu, X. W., & Feng, H. J. (2005). Effect of easily degradable substrate on anaerobic degradation of pentachlorophenol in an upflow anaerobic sludge blanket (UASB) reactor. / Journal of Hazardous Materials, 119, 239-43. CrossRef
    40. Sherburne, L. A., Shrout, J. D., & Alvarez, P. J. J. (2005). Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by / Acetobacterium paludosum. Biodegradation, 16, 539-47. CrossRef
    41. Song, K. S., Li, L., Tedesco, L., Duan, H. T., Li, L. H., & Du, J. (2014). Remote quantification of total suspended matter through empirical approaches for inland waters. / Journal of Environmental Informatics, 23, 23-6. CrossRef
    42. S?rensen, A., & Ahring, B. (1993). Measurements of the specific methanogenic activity of anaerobic digestor biomass. / Applied Microbiology and Biotechnology, 40, 427-31. CrossRef
    43. Tay, J. H., He, Y. X., & Yan, Y. G. (2001). Improved anaerobic degradation of phenol with supplemental glucose. / Journal of Environmental Engineering-ASCE, 127, 38-5. CrossRef
    44. Thompson, K. T., Crocker, F. H., & Fredrickson, H. L. (2005). Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by / Gordonia and / Williamsia spp. / Applied and Environmental Microbiology, 71, 8265-272. CrossRef
    45. Upadhyay, U., Kumar, P., & Mehrotra, I. (2008). Anaerobic degradation of benzoate: batch studies. / Bioresource Technology, 99, 6861-865. CrossRef
    46. US EPA. (2004). 2004 Edition of the drinking water standards and health advisories, Office of Water US Environmental Protection Agency Washington, DC. http://water.epa.gov/action/advisories/drinking/upload/2009_04_27_criteria_drinking_dwstandards2004.pdf. Accessed 14 July 2014.
    47. Wang, C. C., Lee, C. M., Lu, C. J., Chuang, M. S., & Huang, C. Z. (2000). Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. / Chemosphere, 41, 1873-879. CrossRef
    48. Wang, N. D., Peng, J., & Hill, G. (2002). Biochemical model of glucose induced enhanced biological phosphorus removal under anaerobic condition. / Water Research, 36, 49-8. CrossRef
    49. Wijetunga, S., Li, X. F., & Jian, C. (2010). Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor. / Journal of Hazardous Materials, 177, 792-98. CrossRef
    50. Wu, W. M., Bhatnagar, L., & Zeikus, J. G. (1993). Performance of anaerobic granules for degradation of pentachlorophenol. / Applied and Environmental Microbiology, 59, 389-97.
    51. Yang, Q., Shang, H. T., Wang, X. L., Li, H. D., & Wang, J. L. (2006). Anaerobic degradation of tetrachloroethylene using different co-substrates as electron donors. / Biomedical and Environmental Sciences, 19, 73-6.
    52. Yang, S., He, Y., Liu, Y., Chou, C., Zhang, P., & Wang, D. (2010). Effect of wastewater composition on the calcium carbonate precipitation in upflow anaerobic sludge blanket reactors. / Frontiers of Environmental Science & Engineering in China, 4, 142-49. CrossRef
    53. Zhao, J. S., Paquet, L., Halasz, A., Manno, D., & Hawari, M. (2004). Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by / Clostridium bifermentans strain HAW-1 and several other H2-producing fermentative anaerobic bacteria. / FEMS Microbiology Letters, 237, 65-2. CrossRef
  • 作者单位:Chunjiang An (1) (2)
    Yarong Shi (1)
    Yanling He (2)
    Guohe Huang (1)
    Jidong Liang (2)
    Zongkuan Liu (3)

    1. Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
    2. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
    3. School of Human Settlement and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
  • ISSN:1573-2932
文摘
The influence of carbon substrate supplement on the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by anaerobic mesophilic granular sludge was investigated. Batch experiments were carried to evaluate the biodegradation performance in the presence of acetate, ethanol, glucose and soluble starch. The results of specific methanogenic activity tests showed that RDX and HMX at concentration of 139 and 20?μmol?L?, respectively, had no major inhibitory effect on the bioactivity of anaerobic granular sludge. Glucose and acetate could better facilitate the degradation of RDX and HMX when compared with ethanol and soluble starch. The concentration of carbon substrate was considered critical for enhancing the transformation of RDX and HMX. As carbon substrate concentration increased up to 50?mmol chemical oxygen demand (COD) L?, there was a major stimulatory effect of the amended carbon substrates, while a slight inhibitory effect was also found at some concentrations. These results indicate that adding suitable carbon substrates may be an important strategy for stimulating the anaerobic biotransformation of high-energetic ammunition compounds in bioreactors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700