用户名: 密码: 验证码:
Emergence of target waves in neuronal networks due to diverse forcing currents
详细信息    查看全文
  • 作者:Jun Ma (15096)
    ChunNi Wang (15096)
    HePing Ying (25096)
    Ying Wu (35096)
    RunTong Chu (15096)
  • 关键词:target wave ; network of neuron ; channel block ; Hodgkin ; Huxley
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:56
  • 期:6
  • 页码:1126-1138
  • 全文大小:1867KB
  • 参考文献:1. Hennig D, Tsironis G P. Wave transmission in nonlinear lattices. Phys Rep, 1999, 307: 333-32 CrossRef
    2. Olemskoi A L, Klepikov V F. The theory of spatiotemporal pattern in nonequilibrium systems. Phys Rep, 2000, 338: 571-77 CrossRef
    3. Gerstner W, Kistler W M. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge: Cambridge University Press, 2002 CrossRef
    4. Roxin A, Riecke H, Solla S. Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett, 2004, 92: 198101 CrossRef
    5. Lindner B, García-Ojalvo J, Neiman A, et al. Effects of noise in excitable systems. Phys Rep, 2004, 392: 321-24 CrossRef
    6. Boccalettia S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics. Phys Rep, 2006, 424: 175-08 CrossRef
    7. Rabinovich M I, Varona P, Selverston A I, et al. Dynamical principles in neuroscience. Rev Mod Phys, 2006, 78: 1213-265 CrossRef
    8. Eckmann J P, Feinerman O, Gruendlinger L, et al. The physics of living neural networks. Phys Rep, 2007, 449: 54-6 CrossRef
    9. Wang Q Y, Perc M, Duan Z S, et al. Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Physica A 2010, 389: 3299-306 CrossRef
    10. Volman V, Perc M, Bazhenov M. Gap junctions and epileptic seizures-Two sides of the same coin? PLoS ONE, 2011, 6: e20572 CrossRef
    11. Wang Q Y, Chen G R, Perc M. Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE, 2011, 6: e15851 CrossRef
    12. Guo D Q, Wang Q Y, Perc M. Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys Rev E, 2012, 85: 061905 CrossRef
    13. Liu F, Wang J F, Wang W. Frequency sensitivity in weak signal detection. Phys Rev E, 2001, 59: 3453-460 CrossRef
    14. Yu Y G, Liu F, Wang J, et al. Spike timing precision for a neuronal array with periodic signal. Phys Lett A, 2001, 282(1-): 23-0 CrossRef
    15. Yu Y G, Wang W, Wang J F, et al. Resonance-enhanced signal detection and transduction in HH neuronal systems. Phys Rev E, 2001, 63: 021907 CrossRef
    16. Zhou C S, Kurth J. Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos, 2003, 13: 401-09 CrossRef
    17. Yu Y G, Liu F, Wang W, et al. Optimal synchrony state fore maximal information transmission. NeuroReport, 2004, 15: 1605-610 CrossRef
    18. Wang S T, Liu F, Wang W, et al. Impact of spatially correlated noise on neuronal firing. Phys Rev E, 2004, 69: 011909 CrossRef
    19. Wang S T, Wang W, Liu F. Propagation of firing rate in feed-forward neuronal network. Phys Rev Lett, 2006, 96: 018103 CrossRef
    20. Zhang J Q, Shen C S, Cui Z F. Modulation on the collective response behavior by the system size in two-dimensional coupled cell systems. Sci China Ser G-Phys Mech Astron, 2006, 49(3): 304-12 CrossRef
    21. Zhang J Q, Liu J Q, Chen H S. Selective effects of noise by stochastic multi-resonance in coupled cells system. Sci China Ser G-Phys Mech Astron, 2008, 51: 492-98 CrossRef
    22. Shen Y, Hou Z H, Xin H W. Transition to burst synchronization on complex neuron networks. Phys Rev E, 2008, 77: 031920 CrossRef
    23. Ozer M, Perc M, Uzuntarla M. Stochastic resonance on Newman-Watts networks of Hodgkin-Huxley neurons with local periodic driving. Phys Lett A, 2009, 373: 964-68 CrossRef
    24. Sun X J, Perc M, Lu Q S, et al. Effects of correlated Gaussian noise on the mean firing rate and correlations of an electrically coupled neuronal network. Chaos, 2010, 20: 033116 CrossRef
    25. Wu H, Hou Z H, Xin H W. Delay Enhanced spatiotemporal order in coupled neuronal systems. Chaos, 2010, 20: 043140 CrossRef
    26. Zhang J Q, Wang C D, Wang M S, et al. Firing patterns transition induced by system size in coupled Hindmarsh-Rose neural system. Neurocomput, 2011, 74: 2961-966 CrossRef
    27. Ma J, Wu Y, Wu N J, et al. Detection of ordered wave in the networks of neurons with changeable connection. Sci China-Phys Mech Astron, 2013, 56(5): 952-59 CrossRef
    28. Wang Q Y, Wang H H, Perc M, et al. Multiple firing coherence resonances in excitatory and inhibitory coupled neurons. Commun Nonlinear Sci Numer Simulat, 2012, 17: 3979-988 CrossRef
    29. Liu Z Q, Zhang H M, Li Y L, et al. Multiple spatial coherence resonance induced by stochastic signal in neuronal networks near a saddle-node bifurcation. Physica A, 2010, 389: 2642-653 CrossRef
    30. Tessone C J, Wio H S. Stochastic resonance in an extended Fitz-Hugh-Nagumo system: The role of selected coupling. Physica A, 2007, 374: 46-4 CrossRef
    31. Juan T C, Raúl T. Diversity-induced resonance in a model for opinion formation, Eur Phys J B, 2009, 71: 549-55 CrossRef
    32. Tessone C J, Mirasso C R, Toral R, et al. Diversity-induced resonance. Phys Rev Lett, 2006, 97: 194101 CrossRef
    33. Chen H S, Zhang J Q, Liu J Q. Enhancement of neuronal coherence by diversity in coupled Rulkov-map models. Physica A, 2008, 87: 1071-076 CrossRef
    34. Chen H S, Zhang J Q. Diversity-induced coherence resonance in spatial extended chaotic systems. Phys Rev E, 2008, 77: 026207 CrossRef
    35. Newby J, Keener J P. Perturbation analysis of spontaneous action potential initiation by stochastic ion channels. Phys Rev E, 2011, 84: 011918 CrossRef
    36. Ozer M, Perc M, Uzuntarla M. Controlling the spontaneous spiking regularity via channel blocking on Newman-Watts networks of Hodgkin-Huxley neurons. EPL, 2009, 86: 40008 CrossRef
    37. Schmid G, Goychuk I, H?nggi P. Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model. Phys Biol, 2004, 1: 61-6 CrossRef
    38. Ma J, Huang L, Ying H P, et al. Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin-Huxley neuronal networks. Commun Nonlinear Sci Numer Simulat, 2012, 17: 4281-293 CrossRef
    39. Ma J, Huang L, Ying H P, et al. Detecting the breakup of spiral waves in small-world networks of neurons due to channel block. Chin Sci Bull, 2012, 57(17): 2094-101 CrossRef
    40. Perc M. Stochastic resonance on excitable small-world networks via a pacemaker. Phys Rev E, 2007, 76: 066203 CrossRef
    41. Perc M, Gosak M. Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators. New J Phys, 2008, 10: 053008 CrossRef
    42. Gosak M, Marko M, Perc M. Pacemaker-guided noise-induced spatial periodicity in excitable media. Physica D, 2009, 238: 506-15 CrossRef
    43. Jiang L L, Zhou T, Perc M, et al. Emergence of target waves in paced populations of cyclically competing species. New J Phys, 2009, 11: 103001 CrossRef
    44. Li Y Y, Jia B, Gu H G, et al. Diversity induced multiple spatial coherence resonances and spiral waves in neuronal network with and without noise. Commun Theor Phys, 2012, 57(5): 817-24 CrossRef
    45. Tang Z, Li Y Y, Xi L, et al. Spiral waves and multiple spatial coherence resonances induced by the colored noise in neuronal network. Commun Theor Phys, 2012, 57(1): 61-7 CrossRef
    46. Kawaguchi M, Mino H, Durand D M. Stochastic resonance can enhance information transmission in neural networks. IEEE T Bio-Med Eng, 2011, 58(7): 1951-958 CrossRef
    47. Fell J, Axmacher N. The role of phase synchronization in memory processes. Nature, 2011, 12: 105-18
    48. Ma J, Jia Y, Tang J, et al. Breakup of spiral waves in the coupled Hindmarsh -Rose neurons. Chin Phys Lett, 2008, 25: 4325-328 CrossRef
    49. Ma J, Yang L J, Wu Y, et al. Spiral wave in the small-world networks of Hodgkin-Huxley neurons. Commun Theor Phys, 2010, 54(3): 583-88 CrossRef
    50. Ma J, Wu Y, Ying H P, et al. Channel noise-induced phase transition of spiral wave in networks of Hodgkin-Huxley neurons. Chin Sci Bull, 2011, 56(2): 151-57 CrossRef
    51. Izhikevich E M. Which model to use for cortical spiking neurons? IEEE T Neural Network, 2004, 15(5): 1063-070 CrossRef
    52. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500-44
    53. Fox R F, Lu Y N. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys Rev E, 2004, 49: 3421-431 CrossRef
    54. Schmid G, Goychuk I, H?nggi P. Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin-Huxley systems. Phys Biol, 2006, 3: 248-54 CrossRef
  • 作者单位:Jun Ma (15096)
    ChunNi Wang (15096)
    HePing Ying (25096)
    Ying Wu (35096)
    RunTong Chu (15096)

    15096. Department of Physics, Lanzhou University of Technology, Lanzhou, 730050, China
    25096. Department of Physics, Zhejiang University, Hangzhou, 310027, China
    35096. School of Aerospace, Xi’an Jiaotong University, Xi’an, 710049, China
  • ISSN:1869-1927
文摘
The electric activities of neurons could be changed when ion channel block occurs in the neurons. External forcing currents with diversity are imposed on the regular network of Hodgkin-Huxley (HH) neuron, and target waves are induced to occupy the network. The forcing current I 1 is imposed on neurons in a local region with m 0×m 0 nodes in the network, neurons in other nodes are imposed with another forcing current I 2. Target wave could be developed to occupy the network when the gradient forcing current (I 1-em class="a-plus-plus">I 2) exceeds certain threshold, and the formation of target wave is independent of the selection of boundary condition. It is also found that the developed target wave can decrease the negative effect of ion channel block and suppress the spiral wave, and thus channel noise is also considered. The potential mechanism of formation of target wave could be that the gradient forcing current (I 1-em class="a-plus-plus">I 2) generates quasi-periodical signal in local area, and the propagation of quasi-periodical signal induces target-like wave due to mutual coupling among neurons in the network.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700