用户名: 密码: 验证码:
A self-powered microfluidic monodispersed droplet generator with capability of multi-sample introduction
详细信息    查看全文
  • 作者:Chunyu Li ; Jian Xu ; Bo Ma
  • 关键词:Air ; evacuated PDMS ; Droplet generation ; Multi ; sample introduction ; Microfluidics
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:18
  • 期:5-6
  • 页码:1067-1073
  • 全文大小:1,206 KB
  • 参考文献:Abate AR, Weitz DA (2011) Syringe-vacuum microfluidics: a portable technique to create monodisperse emulsions. Biomicrofluidics 5:014107. doi:10.-063/-.-567093 View Article
    Adamson DN, Mustafi D, Zhang JXJ, Zheng B, Ismagilov RF (2006) Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices. Lab Chip 6:1178-186. doi:10.-039/?b604993a View Article
    Agresti JJ et al (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci USA 107:4004-009. doi:10.-073/?pnas.-910781107 View Article
    Ahn K, Agresti J, Chong H, Marquez M, Weitz DA (2006) Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 88:264105. doi:10.-063/-.-218058 View Article
    Baret J-C (2012) Surfactants in droplet-based microfluidics. Lab Chip 12:422-33. doi:10.-039/?c1lc20582j View Article
    Beer NR et al (2008) On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal Chem 80:1854-858. doi:10.-021/?ac800048k View Article
    Brouzes E et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA 106:14195-4200. doi:10.-073/?pnas.-903542106 View Article
    Bui M-PN, Li CA, Han KN, Choo J, Lee EK, Seong GH (2011) Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient. Anal Chem 83:1603-608. doi:10.-021/?ac102472a View Article
    Cao Z et al (2013) Droplet sorting based on the number of encapsulated particles using a solenoid valve. Lab Chip 13:171-78. doi:10.-039/?c2lc40950j View Article
    Clausell-Tormos J et al (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15:427-37. doi:10.-016/?j.?chembiol.-008.-4.-04 View Article
    Diguet A, Li H, Queyriaux N, Chen Y, Baigl D (2011) Photoreversible fragmentation of a liquid interface for micro-droplet generation by light actuation. Lab Chip 11:2666-669. doi:10.-039/?c1lc20328b View Article
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70:4974-984View Article
    Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437-46. doi:10.-039/?b510841a View Article
    Golberg A, Yarmush ML, Konry T (2013) Picoliter droplet microfluidic immunosorbent platform for point-of-care diagnostics of tetanus. Microchim Acta 180:855-60. doi:10.-007/?s00604-013-0998-3 View Article
    He MY, Kuo JS, Chiu DT (2005) Electro-generation of single femtoliter- and picoliter-volume aqueous droplets in microfluidic systems. Appl Phys Lett 87:031916. doi:10.-063/-.-997280 View Article
    Hosokawa K, Sato K, Ichikawa N, Maeda M (2004) Power-free poly (dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis. Lab Chip 4:181-85. doi:10.-039/?b403930k View Article
    Hosokawa K, Omata M, Sato K, Maeda M (2006) Power-free sequential injection for microchip immunoassay toward point-of-care testing. Lab Chip 6:236-41. doi:10.-039/?b513424b View Article
    Huebner A, Bratton D, Whyte G, Yang M, deMello AJ, Abell C, Hollfelder F (2009) Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9:692-98. doi:10.-039/?b813709a View Article
    Li L, Mustafi D, Fu Q, Tereshko V, Chen DL, Tice JD, Ismagilov RF (2006) Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc Natl Acad Sci USA 103:19243-9248. doi:10.-073/?pnas.-607502103 View Article
    Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503. doi:10.-103/?PhysRevLett.-2.-54503 View Article
    Link DR et al (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45:2556-560. doi:10.-002/?anie.-00503540 View Article
    Mazutis L, Baret J-C, Griffiths AD (2009) A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Lab Chip 9:2665-672. doi:10.-039/?b903608c View Article
    Park S-Y, Wu T-H, Chen Y, Teitell MA, Chiou P-Y (2011) High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab Chip 11:1010-012. doi:10.-039/?c0lc00555j View Article
    Shi WW, Qin JH, Ye NN, Lin BC (2008) Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8:1432-435. doi:10.-039/?b808753a View Article
    Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613-4619. doi:10.-021/?ja0354566 View Article
    Song H
  • 作者单位:Chunyu Li (1)
    Jian Xu (1)
    Bo Ma (1)

    1. CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
We presented a simple, self-powered microfluidic droplet generator capable of generating monodispersed droplets and performing multi-sample introduction. The sealed air-evacuated PDMS channels/chambers provide an internal pumping source, eliminating the needs of external bulky and expensive pumping equipments, and simplifying manual operations. Droplets produced by this droplet generator exhibited a narrow size distribution with a coefficient of variation below 3?%. The droplet size can be controlled in a flexible way by adjusting the hydraulic resistance of the channel networks or the hydrostatic pressure exerted on the inlets. Utilizing this droplet generator, multi-sample introduction was realized by demand-controlled run/stop of the droplet generation or by sequential addition of the different samples during the continuous droplet generation. This self-powered, portable, and easy-to-use droplet generator would extend the droplet-based applications into in-field analysis and facilitate exploitation of droplet microfluidics by non-technical users.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700