用户名: 密码: 验证码:
Cichlid fishes as models of ecological diversification: patterns, mechanisms, and consequences
详细信息    查看全文
  • 作者:Edward D. Burress
  • 关键词:Adaptive radiation ; Cichlidae ; Evolution ; Niche ; Speciation
  • 刊名:Hydrobiologia
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:748
  • 期:1
  • 页码:7-27
  • 全文大小:5,853 KB
  • 参考文献:1. Albertson, R. C., 2008. Morphological divergence predicts habitat partitioning in a Lake Malawi cichlid species complex. Copeia 2008: 689-98.
    2. Albertson, R. C. & T. D. Kocher, 2005. Genetic architecture sets limits on transgressive segregation in hybrid cichlid fishes. Evolution 59: 686-90.
    3. Albertson, R. C. & T. D. Kocher, 2006. Genetic and developmental basis of cichlid trophic diversity. Heredity 97: 211-21.
    4. Albertson, R. C., J. T. Streelman & T. D. Kocher, 2003. Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. Proceedings of the National Academy of Sciences 100: 5252-257.
    5. Albertson, R. C., J. T. Streelman, T. D. Kocher & P. C. Yelick, 2005. Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies. Proceedings of the National Academy of Sciences 102: 16287-6292.
    6. Arbour, J. H. & H. López-Fernández, 2013. Ecological variation in South American geophagine cichlids arose during an early burst of adaptive morphological and functional evolution. Proceedings of the Royal Society B 280: 20130849.
    7. Arnegard, M. E., J. Snoeks & S. A. Schaefer, 2001. New three-spotted cichlid species with hypertrophied lips (Teleostei: Cichlidae) from the deep waters of Lake Malawi/Nyasa, Africa. Copeia 2001: 705-17.
    8. Barlow, G. W., 1976. The midas cichlid in Nicaragua. In Thorson, T. B. (ed.), Investigations of the Ichthyofauna of Nicaraguan Lakes. School of Life Sciences, University of Nebraska, Nebraska: 333-58.
    9. Barlow, G. W. & J. W. Munsey, 1976. The red devil midas cichlid species complex in Nicaragua. In Thorson, T. B. (ed.), Investigations of the Ichthyofauna of Nicaraguan Lakes. School of Life Sciences, University of Nebraska, Lincoln, Nebraska: 359-70.
    10. Barluenga, M., K. N. St?lting, W. Salzburger, M. Muschick & A. Meyer, 2006. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439: 719-23.
    11. Bootsma, H. A., R. E. Hecky, R. H. Hesslein & G. F. Turner, 1996. Food partitioning among Lake Malawi nearshore fishes as revealed by stable isotope analyses. Ecology 77: 1286-290.
    12. Burress, E. D., A. Duarte, M. M. Gangloff & L. Siefferman, 2013a. Isotopic trophic guild structure of a diverse subtropical South American fish community. Ecology of Freshwater Fish 22: 66-2.
    13. Burress, E. D., A. Duarte, W. S. Serra, M. Loureiro, M. M. Gangloff & L. Siefferman, 2013b. Functional diversification within a predatory species flock. PLOS One 8: e80929.
    14. Burress, E. D., A. Duarte, W. S. Serra, M. M. Gangloff & L. Siefferman, 2013c. Species-specific ontogenetic diet shifts among Neotropical / Crenicichla: using stable isotopes and tissue stoichiometry. Journal of Fish Biology 82: 1904-915.
    15. Campbell, L. M., R. E. Hecky & S. B. Wandera, 2003. Stable isotope analyses of food web structure and fish diet in Napoleon and Winam Gulfs, Lake Victoria, East Africa. Journal of Great Lakes Research 29: 243-57.
    16. Casciotta, J. R. & G. Arratia, 1993. Jaws and teeth of American cichlids (Pisces: Labroidei). Journal of Morphology 217: 1-6.
    17. Clabaut, C., P. M. E. Bunje, W. Salzburger & A. Meyer, 2007. Geometric morphometric analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish radiations. Evolution 61: 560-78.
    18. Cochran-Biederman, J. L. & K. O. Winemiller, 2013. Relationships among habitat, ecomorphology and diets of cichlids in the Bladen River, Belize. Environmental Biology of Fish 88: 143-52.
    19. Collar, D. C., B. C. O’Meara, P. C. Wainwright & T. J. Near, 2009. Piscivory limits diversification of feeding morphology in centrarchid fishes. Evolution 63: 1557-573.
    20. Colombo, M., E. T. Diepeveen, M. Muschick, M. E. Santos, A. Indermaur, N. Bioileau, M. Barluenga & W. Salzburger, 2012. The ecological and genetic basis of convergent thick-lipped phenotypes in cichlid fishes. Molecular Ecology 22: 670-84.
    21. Connell, J. H., 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35: 131-38.
    22. Cooper, W. J., K. Parsons, A. McIntyre, B. Kern, A. McGee-Moore & R. C. Albertson, 2010. Bentho-pelagic divergence was prodigious and consistent during multiple adaptive radiations within African rift-lakes. PLOS One 5: e9551.
    23. Crampton, W. G. R., 2008. Ecology and life history of an Amazon floodplain cichlid: the discus fish / Symphysodon (Perciformes: Cichlidae). Neotropical Ichthyology 6: 599-12.
    24. Day, J. J., J. A. Cotton & T. G. Barraclough, 2008. Tempo and mode of diversification of Lake Tanganyika cichlid fishes. PLOS One 3: e1730.
    25. de Mérona, B. & J. Rankin de Mérona, 2004. Food resource partitioning in a fish community of the central Amazon floodplain. Neotropical Ichthyology 2: 75-4.
    26. Diehl, S., 2003. The evolution and maintenance of omnivory: dynamic constraints and the role of food quality. Ecology 84: 25
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
Cichlid fishes are hypothesized to encompass several independent adaptive radiations that display increased diversification rates and impressive ecological heterogeneity. Here, I review major ecological patterns associated with the evolutionary history of cichlids, with particular focus on comparison of Afrotropical and Neotropical lineages. Specifically, I present major patterns of ecological diversification, potential mechanisms that may promote ecological diversification, and possible consequences of ecological diversification. Evolutionary convergence and specialization of ecological (e.g., diet), behavioral (e.g., benthic sifting), and morphological traits (e.g., oral dentition) characterize adaptive patterns that transcend continents. Craniofacial mechanics, the pharyngeal jaw apparatus, phenotypic plasticity, and hybridization may have facilitated diversification of cichlid fishes by generating functional, morphological, and/or genetic diversity. The benthic–pelagic axis has been an important source of divergence during adaptive radiation. Additionally, there are several discrepancies between Afrotropical and Neotropical lineages, such as the relative frequency of herbivorous species, the importance of hybridization in generating diversity, the relative frequency of dentition types, and relationships between dental organization and ecological function. Emphasis on contrasts between Neotropical and Afrotropical lineages improves characterization of patterns at a broader level of organization and indicates that the genetic basis, functional capacity, and ecological opportunity for many traits may be conserved across lineages.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700