用户名: 密码: 验证码:
Oxygen Supply to the Fetal Cerebral Circulation in Hypoplastic Left Heart Syndrome: A Simulation Study Based on the Theoretical Models of Fetal Circulation
详细信息    查看全文
  • 作者:Sayaka Sakazaki ; Satoshi Masutani ; Masaya Sugimoto ; Masanori Tamura…
  • 关键词:Cerebral circulation ; Congenital heart disease ; Fetus ; Hypoplastic left heart syndrome
  • 刊名:Pediatric Cardiology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:36
  • 期:3
  • 页码:677-684
  • 全文大小:490 KB
  • 参考文献:1. Barbu D, Mert I, Kruger M, Bahado-Singh RO (2009) Evidence of fetal central nervous system injury in isolated congenital heart defects: microcephaly at birth. Am J Obstet Gynecol 201(43):e1–e7
    2. Bellinger DC, Jonas RA, Rappaport LA, Wypij D, Wernovsky G, Kuban KC, Barnes PD, Holmes GL, Hickey PR, Strand RD et al (1995) Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 332:549-55 CrossRef
    3. Berg C, Gembruch O, Gembruch U, Geipel A (2009) Doppler indices of the middle cerebral artery in fetuses with cardiac defects theoretically associated with impaired cerebral oxygen delivery in utero: is there a brain-sparing effect? Ultrasound Obstet Gynecol 34:666-72 CrossRef
    4. Donofrio MT, Bremer YA, Schieken RM, Gennings C, Morton LD, Eidem BW, Cetta F, Falkensammer CB, Huhta JC, Kleinman CS (2003) Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol 24:436-43 CrossRef
    5. Gramellini D, Folli MC, Raboni S, Vadora E, Merialdi A (1992) Cerebral-umbilical Doppler ratio as a predictor of adverse perinatal outcome. Obstetr Gynecol 79:416-20 CrossRef
    6. Johnston MV (2007) Congenital heart disease and brain injury. N Engl J Med 357:1971-973 CrossRef
    7. Jouannic JM, Benachi A, Bonnet D, Fermont L, Le Bidois J, Dumez Y, Dommergues M (2002) Middle cerebral artery Doppler in fetuses with transposition of the great arteries. Ultrasound Obstet Gynecol 20:122-24 CrossRef
    8. Kaltman JR, Di H, Tian Z, Rychik J (2005) Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet Gynecol 25:32-6 CrossRef
    9. Licht DJ, Shera DM, Clancy RR, Wernovsky G, Montenegro LM, Nicolson SC, Zimmerman RA, Spray TL, Gaynor JW, Vossough A (2009) Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 137:529-36; discussion 536-27
    10. Limperopoulos C, Majnemer A, Shevell MI, Rosenblatt B, Rohlicek C, Tchervenkov C (1999) Neurologic status of newborns with congenital heart defects before open heart surgery. Pediatrics 103:402-08 CrossRef
    11. Limperopoulos C, Majnemer A, Shevell MI, Rohlicek C, Rosenblatt B, Tchervenkov C, Darwish HZ (2002) Predictors of developmental disabilities after open heart surgery in young children with congenital heart defects. J Pediatr 141:51-8 CrossRef
    12. Maeno YV, Kamenir SA, Sinclair B, van der Velde ME, Smallhorn JF, Hornberger LK (1999) Prenatal features of ductus arteriosus constriction and restrictive foramen ovale in d-transposition of the great arteries. Circulation 99:1209-214 CrossRef
    13. Manzar S, Nair AK, Pai MG, Al-Khusaiby SM (2005) Head size at birth in neonates with transposition of great arteries and hypoplastic left heart syndrome. Saudi Med J 26:453-56
    14. Massaro AN, El-Dib M, Glass P, Aly H (2008) Factors associated with adverse neurodevelopmental outcomes in infants with congenital heart disease. Brain Dev 30:437-46 CrossRef
    15. Meise C, Germer U, Gembruch U (2001) Arterial Doppler ultrasound in 115 second- and third-trimester fetuses with congenital heart disease. Ultrasound Obstet Gynecol 17:398-02 CrossRef
    16. Rosenthal GL (1996) Patterns of prenatal growth among infants with cardiovascular malformations: possible fetal hemodynamic effects. Am J Epidemiol 143:505-13
文摘
Hypoxia due to congenital heart diseases (CHDs) adversely affects brain development during the fetal period. Head circumference at birth is closely associated with neuropsychiatric development, and it is considerably smaller in newborns with hypoplastic left heart syndrome (HLHS) than in normal newborns. We performed simulation studies on newborns with CHD to evaluate the cerebral circulation during the fetal period. The oxygen saturation of cerebral blood flow in newborns with CHD was simulated according to a model for normal fetal circulation in late pregnancy. We compared the oxygen saturation of cerebral blood flow between newborns with tricuspid atresia (TA; a disease showing univentricular circulation and hypoplasia of the right ventricle), those with transposition of the great arteries (TGA; a disease showing abnormal mixing of arterial and venous blood), and those with HLHS. The oxygen saturation of cerebral blood flow in newborns with normal circulation was 75.7?%, whereas it was low (49.5?%) in both newborns with HLHS and those with TA. Although the oxygen level is affected by the blood flow through the foramen ovale, the oxygen saturation in newborns with TGA was even lower (43.2?%). These data, together with previous reports, suggest that the cerebral blood flow rate is decreased in newborns with HLHS, and the main cause was strongly suspected to be retrograde cerebral perfusion through a patent ductus arteriosus. This study provides important information about the neurodevelopmental prognosis of newborns with HLHS and suggests the need to identify strategies to resolve this unfavorable cerebral circulatory state in utero.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700