用户名: 密码: 验证码:
Soil–structure cyclic direct shear tests: a new interpretation of the direct shear experiment and its application to a series of cyclic tests
详细信息    查看全文
文摘
This paper presents a series of cyclic 2D direct shear tests on sand–rough material interfaces under constant normal load (CNL) and constant normal stiffness (CNS) conditions. The aim of these tests is to describe the behavior of the soil–pile contact subjected to a large number of cycles due to environmental or anthropic loadings. These cycles (typically 104 or less due to an early rupture) are small (10, 20 and 40 kPa in terms of shear stress). A new interpretation of the direct shear tests is proposed. The sample of soil is schematically composed of a sheared interface and of a buffer under oedometric load. The problem of sand leakage between the shear box and the rough plate, classical phenomenon in this type of test, is focused. The effect of initial density, position of “center of cycles” in stress plane (mean cyclic variables) and cyclic amplitude is investigated. The cycles are defined by the initial mean cyclic normal stress, the level of initial mean cyclic stress ratio and the normalized cyclic amplitude. Under CNL condition, either dilation or contraction is exhibited, in agreement with the characteristic state developed by Luong (International symposium on soils under cyclic and transient loading, Swansea, 7–11 January, pp 315–324, 1980). The influence of a prescribed normal stiffness is especially considered. It can be highlighted that CNS cyclic paths are always contractive. This contraction results in a drop of mean cyclic normal stress often called degradation of friction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700