用户名: 密码: 验证码:
Structural, energetic and response electric properties of cyclic selenium clusters: an ab initio and density functional theory study
详细信息    查看全文
  • 作者:Andrea Alparone (1) agalparone@unict.it
  • 关键词:Selenium clusters &#8211 ; Structures &#8211 ; Energetics &#8211 ; Ionization energy &#8211 ; Electron affinity &#8211 ; Dipole polarizabilities
  • 刊名:Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:131
  • 期:6
  • 页码:DOI: 10.1007/s00214-
  • 全文大小:529.2 KB
  • 参考文献:1. Kumar V, Esfarjani K, Kawazoe Y (2002) Clusters and nanomaterials. Springer, Berlin
    2. Alonso JA (2006) Structure and properties of atomic nanoclusters. Imperial College Press, London
    3. Yoon B, H盲kkinen H, Landman U, W枚rz AS, Antonietti J-M, Abbet S, Judai K, Heiz U (2005) Science 307:403–407
    4. Nagaya K, Hayakawa T, Yao M, Endo H (1996) J Non-Cryst Solids 205–207:807–810, and references therein
    5. Licht S (1995) Sol Energy Mater Sol Cells 38:305–319
    6. Barren AR (1995) Adv Mater Opt Electron 5:245–258
    7. Tsuchiya K, Sakata M, Funyu A, Ikoma H (1995) Jpn J Appl Phys 34:5926–5932
    8. Zakery A, Elliot SR (2003) J Non-Cryst Solids 330:1–12
    9. Ogorelec Z, Tonejc A (2000) Mater Lett 42:81–85
    10. Terasaki O, Yamakazi K, Thomas JM, Oshuna T, Watanabe D, Sanders JV, Barry JC (1987) Nature 330:58–60
    11. Parise JB, MacDougall JE, Herron N, Farlee R, Sleight AW, Wang Y, Bein T, Moller T, Moroney LM (1988) Inorg Chem 27:221–228
    12. Wirnsberger G, Fritzer HP, Zink R, Popitsch A, Pillep P, Behrens P (1999) J Phys Chem B 103:5797–5801
    13. Poborchii VV (1998) Solid State Comm 107:513–518, and references therein
    14. Goutfer-Wurmser F, Herold C, Mareche C-F, Lagrange P (1998) Mol Cryst Liq Cryst 310:51–56
    15. Grigorian L, Fang S, Sumanasekera G, Rao AM, Schrader L, Eklund PC (1997) Synth Met 87:211–217
    16. Donohue J (1974) The structures of the elements. Wiley, New York, p 370
    17. Steudel R, Strauss E-M (1984) Adv Inorg Chem Radiochem 28:135–166
    18. Cherin P, Unger P (1972) Acta Crystallogr B 28:313–317
    19. Nagata K, Ishibashi K, Miyamoto Y (1981) Jpn J Appl Phys 20:463–469
    20. Lucovsky G, Mooradian A, Taylor W, Wright GB, Keezer RC (1967) Solid State Comm 5:113–117
    21. Cernosek Z, Holubova J, Cernoskova E (2011) J Therm Anal Calorim 103:429–433
    22. Eysel HH, Sunder S (1979) Inorg Chem 18:2626–2627
    23. Lin Z, Wang Z, Chen W, Lir L, Li G, Liu Z, Han H, Wang Z (1996) Solid State Comm 100:841–843
    24. Goldbach A, Iton LE, Saboungi M-L (1997) Chem Phys Lett 281:69–73
    25. Goldbach A, Grimsditch M, Iton L, Saboungi M-L (1997) J Phys Chem B 101:330–334
    26. Goldbach A, Saboungi M-L (2003) Eur Phys J E 12:185–190
    27. Li IL, Zhai JP, Launois P, Ruan SC, Tang ZK (2005) J Am Chem Soc 127:16111–16119
    28. Li IL, Ruan SC, Li ZM, Zhai JP, Tang ZK (2005) Appl Phys Lett 87:071902/1–071902/3
    29. Poborchii VV, Ivanova MS, Petranovskii VP, Barnakov YA, Kasuya A, Nishina Y (1996) Mater Sci Eng A 217–218:129–134
    30. Poborchii VV (1996) Chem Phys Lett 251:230–234
    31. Poborchii VV, Kolobov AV, Oyanagi H, Romanov SG, Tanaka K (1997) Chem Phys Lett 280:10–16
    32. Poborchii VV, Kolobov AV, Caro J, Zhuravlev VV, Tanaka K (1997) Chem Phys Lett 280:17–23
    33. Poborchii V, Kolobov A, Oyanagi H, Romanov S, Tanaka K (1998) Nanostruct Mat 10:427–436
    34. Poborchii VV (2001) J Chem Phys 115:2707–2717
    35. Poborchii VV, Satob M, Shchukarev AV (1997) Solid State Comm 103:649–654
    36. Kohara S, Goldbach A, Koura N, Saboungi M-L, Curtiss LA (1998) Chem Phys Lett 287:282–288
    37. Komulainen J, Laitinen RS, Suontamo RJ (2002) Can J Chem 80:1435–1443
    38. Demkov AA, Sankey OF (2001) J Phys Condens Matter 13:10433–10457
    39. Hohl D, Jones RO, Car R, Parrinello M (1987) Chem Phys Lett 139:540–545
    40. Wrackmeyer B (2005) Struct Chem 16:67–71
    41. Mikko Rautiainen J, Way T, Schatte G, Passmore J, Laitinen RS, Suontamo RJ, Valkonen J (2005) Inorg Chem 44:1904–1913
    42. Orlova G, Goddard JD (1999) J Phys Chem A 103:6825–6834
    43. Goddard JD, Chen X, Orlova G (1999) J Phys Chem A 103:4078–4084
    44. Li ZQ, Yu JZ, Ohno K, Gu BL, Czajka R, Kasuya A, Nishina Y, Kawazoe Y (1995) Phys Rev B 52:1524–1527
    45. Heinemann C, Koch W, Lindner G-G, Reinen D, Widmark P-O (1996) Phys Rev A 54:1979–1993
    46. Beck DR, Key RJ, Slaughter AR, Mathews RD, Banna MS (1983) Phys Rev A 28:2634–2640
    47. Oligschleger C, Jones RO, Reimann SM, Schober HR (1996) Phys Rev B 53:6165–6173
    48. Pan BC, Han JG, Yang J, Yang S (2000) Phys Rev B 62:17026–17030
    49. Xu W, Bai W (2008) J Mol Struct (Theochem) 854:89–105
    50. Lippincott ER, Nagarajan G, Stutman JM (1966) J Phys Chem 70:78–84
    51. Torrent-Sucarrat M, De Proft F, Geerlings P (2005) J Phys Chem A 109:6071–6076
    52. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789
    53. Becke AD (1993) J Chem Phys 98:5648–5652
    54. Woon DE, Dunning TH (1994) J Chem Phys 100:2975–2988
    55. Sekino H, Bartlett RJ (1986) J Chem Phys 85:976–989
    56. Karna SP, Dupuis M (1991) J Comput Chem 12:487–504
    57. Kurtz HA, Stewart JJP, Dieter KM (1990) J Comput Chem 11:82–87
    58. Yanai T, Tew D, Handy NC (2004) Chem Phys Lett 393:51–57
    59. Champagne B, Perp猫te EA, van Gisbergen SJA, Baerends E-J, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489–10498
    60. Jacquemin D, Perp猫te EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:144105/1–144105/12
    61. Limacher PA, Mikkelsen KV, Luthi HP (2009) J Chem Phys 130:194114/1–194114/7
    62. Alparone A (2011) Chem Phys Lett 514:21–25
    63. Maroulis G (2011) Theor Chem Acc 129:437–445
    64. Feller D (1996) J Comput Chem 17:1571–1586
    65. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052
    66. Sadlej AJ (1991) Theoret Chim Acta 81:45–63
    67. Rice JE, Handy NC (1991) J Chem Phys 94:4959–4971
    68. Douglas M, Kroll NM (1974) Ann Phys 82:89–155
    69. Hess BA (1986) Phys Rev A 33:3742–3748
    70. Jansen G, Hess BA (1989) Phys Rev A 39:6016–6017
    71. Benkova Z, Sadlej AJ (2004) Mol Phys 102:687–699. Available from: http://www.qch.fns.uniba.sk/Baslib/POL_DK
    72. Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J Chem Phys 110:7667–7676
    73. Bishop DM (1998) Adv Chem Phys 104:1–40
    74. Kirtman B, Champagne B (1997) Int Rev Phys Chem 16:389–420
    75. Luis L, Duran M, Champagne B, Kirtman B (2000) J Chem Phys 122:5203–5213
    76. Champagne B, Luis JM, Duran M, Andr茅s JL, Kirtman B (2000) J Chem Phys 112:1011–1020
    77. Bishop DM, Sauer SPA (1997) J Chem Phys 107:8502–8509
    78. Perp猫te EA, Champagne B, Kirtman B (1997) J Chem Phys 107:2463–2480
    79. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision A. 02. Gaussian, Wallingford
    80. Alparone A (2012) Comput Theor Chem 988:81–85
    81. Millefiori S, Alparone A (2001) J Phys Chem A 105:9489–9497
    82. Mills KC (1974) Thermodynamic data for inorganic sulphides, selenides and tellurides. Butterworths, London
    83. Kirtman B (1988) Chem Phys Lett 143:81–83
    84. Toto JL, Toto TT, de Melo CP, Robins KA (1995) J Chem Phys 102:8048–8052
    85. Hoareau A, Reymond JM, Cabaud B, Uzan R (1975) J Phys (Paris) 36:737–743
    86. Becker J, Rademann K, Hensel F (1991) Z Phys D 19:233–235
    87. Tribottet B, Benamar A, Rayane D, Melinon P, Broyer M (1993) Z Phys D 26:352–354
    88. Igel-Mann G, Stoll H, Preuss H (1993) Mol Phys 80:341–354
    89. Snodgrass JT, Coe JV, McHugh KM, Freidhoff CB, Bowen KH (1989) J Phys Chem 93:1249–1254
    90. Bonin KD, Kresin VV (1997) Electric-dipole polarizabilities of atoms, molecules and clusters. World Scientific, Singapore
    91. Millefiori S, Alparone A (1998) J Mol Struct (Theochem) 422:179–190
    92. Millefiori S, Alparone A (2004) Chem Phys 303:27–36
    93. Hurst GB, Dupuis M, Clementi E (1988) J Chem Phys 89:385–395
    94. Kirtman B, Hasan M (1992) J Chem Phys 96:470–479
    95. Hohm U, Goebel D, Karamanis P, Maroulis G (1998) J Phys Chem A 102:1237–1240
    96. Maroulis G, Xenides D (2003) J Phys Chem A 107:712–719
    97. Miller TM, Bederson B (1977) Adv Atom Mol Phys 13:1–55
    98. Chattaraj PK, Segupta S (1996) J Phys Chem 100:16126–16130
    99. Ghanty TK, Ghosh SK (1996) J Phys Chem 100:12295–12298
    100. Maroulis G (1999) J Chem Phys 111:6846–6849
    101. Maroulis G, Begu茅 D, Pouchan C (2003) J Chem Phys 119:794–797
    102. Maroulis G, Pouchan C (2003) Phys Chem Chem Phys 5:1992–1995
    103. Gough KM (1989) J Chem Phys 91:2424–2432
    104. Laidig KE, Bader RFW (1990) J Chem Phys 93:7213–7224
    105. Xenides D, Maroulis G (2001) J Chem Phys 115:7953–7956
    106. Millefiori S, Alparone A (2000) Phys Chem Chem Phys 2:2495–2501
  • 作者单位:1. Department of Chemistry, University of Catania, viale A. Doria 6, 95125 Catania, Italy
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Theoretical and Computational Chemistry
    Inorganic Chemistry
    Organic Chemistry
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2234
文摘
The geometries, relative stabilities, binding energies, second-order difference of total energy (Δ2 E), vertical ionization energies (VIEs), vertical electron affinities (VEAs) and dipole polarizabilities of neutral Se2 and cyclic Se n (n = 3–12) clusters have been systematically investigated using conventional ab initio [HF, MP2, MP3, MP4, CCSD, CCSD(T)] and density functional theory (B3LYP, CAM-B3LYP) levels with the Dunning’s correlation-consistent (cc-pVDZ, aug-cc-pVDZ, d-aug-cc-pVDZ and aug-cc-pVTZ) and Sadlej (POL and POL-DK) basis sets. For each cluster size, various structural isomers have been considered and optimized to search for the lowest-energy structure. The effects of the geometry, basis set and theoretical level on the calculated properties have been discussed. The relative stability of the clusters has been analyzed using binding energy per atom, Δ2 E and VIE–VEA gap. The computed binding energies and VIEs have been compared with the available observed data. The calculated properties show a strong dependence upon the size and geometry of the cluster. The even-numbered Se n with n = 6 and 8 are predicted to be relatively stable clusters. The physico-chemical properties of selenium clusters have been compared to those of the sulphur homologues. On passing from sulphur to selenium clusters the binding energy per atom decreases, whereas the mean dipole polarizability per atom increases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700